This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Bug in behavior coming in and out of sleep mode

I'm currently building a device that has the following functionality:

1.) wake from sleep mode and wait 5 seconds for a potential button press

2.) if the button is pressed write the current time received from an RTC over twi to flash memory after the button press is received

3.) wait for the button to be released

4.)write the current time (of when button is released) again from RTC received over twi to flash memory

5.) send the flash memory with logged times over ble

6.)go to sleep

When the button is pressed and held I want the device to both wake from sleep mode and write the current time, then begin waiting for the button release.  When the device is woken up (button not in pressed state when program leaves sleep mode) then the button is pressed when the device isn't in sleep mode the program works as intended.  But when I hold the button down to wake the device (ie the program starts with the button already pressed) and continue holding the button down the device writes the starting time, but then restarts (after line 24), writes the starting time again, then waits for the button release. This effectively writes: start time - start time - end time instead of start time - end time.

This problem seems to be due to the program starting with the button in the pressed state, but I'm not sure why.  Here is the function that handles the button press events.  On device startup this function automatically runs after everything is initialized.

void buttonPress()
{
  const bool startTime = 0;
  const bool endTime = 1;
  nrf_gpio_cfg_output(LED); //configures the led pin as an output pin
  nrf_gpio_cfg_input(Button, NRF_GPIO_PIN_PULLUP); //configures the button pin as an input pin. nrf_gpio_cfg_input takes argument for a pin and an enumerator. 
  APP_TIMER_DEF(mSleepTimer);                                      
  app_timer_create(&mSleepTimer, APP_TIMER_MODE_SINGLE_SHOT, mSleepTimer_timeout_handler); //mSleepTimer handler can be passed by ref like this since the third parameter is already the typedef of an app_timer_timeout_handler_t function

  
   //led pin uses inverse logic, give it 0 and will turn on, give 1 and will turn off
   nrf_gpio_pin_set(LED); //turns off the led
  

   while (true) //enter this loop which will act as an event handler for a button press if a button press is received, or timeout and go into sleep mode if DoingNothingTooLong (15 seconds) time is reached
   {
      app_timer_start(mSleepTimer,DoingNothingTooLong, NULL); //timer to put into sleep mode for case of device woken up but no button press is received

      if(nrf_gpio_pin_read(Button) == 0) //reads the button state. 0 means the button is being pressed.  Also stops the timer so that it doesn't enter sleep mode 
      {
        app_timer_stop(mSleepTimer);
        writeTime(startTime);
        nrf_delay_ms(150); //delay to allow for time to be written to memory
        nrf_gpio_pin_clear(LED); //turn on the LED to indicate that start time was successfully written
        
        while(nrf_gpio_pin_read(Button) == 0) //while the button is being pressed loop. stay here until button is released
        {};
        
        writeTime(endTime);
        nrf_delay_ms(150); //delay to allow for time to be written to memory
        nrf_gpio_pin_set(LED); //turn off the LED to indicate that end time was successfully written
        break;
      } 
   } 

}

If more code would help I can add more but I felt it would overly complicate things since this function is where the problem seems to lie and the write function works well.  I want the program to write the time then enter the while loop until the button is pressed, but when woken up with the button in a pressed state it seems to restart after line 24 since the led which indicates a successful write turns on, then the device resets, then the led that indicates a successful write comes back on.  I think I am not understanding something related to waking from a sleep state, so any ideas of what could be going on would be very helpful, thanks!

Parents
  • Depending on your button interrupt priority vs rtc interrupt priority, assuming GPIOTE interrupt priority is higher, the chip will be woken up first in the button interrupt handler context and then returns to other contexts.

    It looks to me that in your applicaiton state machine, there are two ways to reach to the "write start Time" logic. 

    Can you check the function call stack when you set a breakpoint where you see the write startime is called the second time and get the context of why it is called twice? If this is a simple project you have that I can use to replicate, then please do share this project for me to test on DK so that i can help you with some debugging. 

  • Depending on your button interrupt priority vs rtc interrupt priority, assuming GPIOTE interrupt priority is higher, the chip will be woken up first in the button interrupt handler context and then returns to other contexts.

    How do I check/alter these priorities?  I'm using a high priority for my TWI interface to get the time from the RTC but I'm not sure how to check or change the priorities for GPIOTE/Button interrupt.

    I didn't post the full code because I'm using a PCF8523 RTC to get the time so I didn't think others would be able to run it.  Since posing this I added some debounce functionality to the button with timers and updated the code.  This for some reason solved the problem with writing the start time twice. 

    The debounce functions basically just check if the button press lasted for longer than 5 seconds, and only then complete the writing functions.  

    Starting the program with the button in a pressed state still causes the following behavior:

    1.) wake up with button pressed

    2.) go to sleep

    3.) wake up again with button still pressed

    4.) record start and end time as intended

    5.) run as expected

    I can't recreate the double writing bug with the added debounce function so I can't look into the call stack like you asked, but I also don't have that problem anymore either.  I'd appreciate any insight you have about why it restarts if the program wakes up in state where the button is pressed.  The priorities you mentioned seem like a good candidate.

    Here is the full program code:

    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    
    //added to handle fds
    #include "fds.h"
    #include "app_timer.h"
    #include "app_error.h"
    #include "nrf_cli.h"
    #include "fds_example.h"
    
    //end of added to handle fds
    #include <stdbool.h>
    #include "nrf_delay.h"
    #include "nrf_gpio.h"
    
    #define LED 18
    #define LED2 19
    #define LED4 20
    #define Button 14
    //added to handle i/o
    
    //includes for twi
    
    #include <stdio.h>
    #include "boards.h"
    #include "app_util_platform.h"
    #include "app_error.h"
    #include "nrf_drv_twi.h"
    
    
    #include "nrf_log_default_backends.h"
    
    uint8_t* clockTime();
    
    
    //end includes for twi
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "Nordic_UART"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */
    
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
    
    #define DoingNothingTooLong  APP_TIMER_TICKS(15000)    
    #define ValidConnectionTime  APP_TIMER_TICKS(5000)                               //15 seconds in timer ticks, sleep if this condition is met
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    
    
    //global vars
    bool validConnectionFlag = false;
    
    
    //forward declarations
    void writeTime(const bool writeBool);
    void deleteAll();
    
    
    
    /* A tag identifying the SoftDevice BLE configuration. */
    #define APP_BLE_CONN_CFG_TAG    1
    
    /* Array to map FDS events to strings. */
    static char const * fds_evt_str[] =
    {
        "FDS_EVT_INIT",
        "FDS_EVT_WRITE",
        "FDS_EVT_UPDATE",
        "FDS_EVT_DEL_RECORD",
        "FDS_EVT_DEL_FILE",
        "FDS_EVT_GC",
    };
    
    /* Dummy configuration data. */
    static configuration_t m_dummy_cfg =
    {
        .config1_on  = false,
        .config2_on  = true,
        .boot_count  = 0x0,
        .device_name = "dummy",
    };
    
    /* A record containing dummy configuration data. */
    static fds_record_t const m_dummy_record =
    {
        .file_id           = CONFIG_FILE,
        .key               = CONFIG_REC_KEY,
        .data.p_data       = &m_dummy_cfg,
        /* The length of a record is always expressed in 4-byte units (words). */
        .data.length_words = (sizeof(m_dummy_cfg) + 3) / sizeof(uint32_t),
    };
    
    /* Keep track of the progress of a delete_all operation. */
    static struct
    {
        bool delete_next;   //!< Delete next record.
        bool pending;       //!< Waiting for an fds FDS_EVT_DEL_RECORD event, to delete the next record.
    } m_delete_all;
    
    /* Flag to check fds initialization. */
    static bool volatile m_fds_initialized;
    
    
    const char *fds_err_str(ret_code_t ret)
    {
        /* Array to map FDS return values to strings. */
        static char const * err_str[] =
        {
            "FDS_ERR_OPERATION_TIMEOUT",
            "FDS_ERR_NOT_INITIALIZED",
            "FDS_ERR_UNALIGNED_ADDR",
            "FDS_ERR_INVALID_ARG",
            "FDS_ERR_NULL_ARG",
            "FDS_ERR_NO_OPEN_RECORDS",
            "FDS_ERR_NO_SPACE_IN_FLASH",
            "FDS_ERR_NO_SPACE_IN_QUEUES",
            "FDS_ERR_RECORD_TOO_LARGE",
            "FDS_ERR_NOT_FOUND",
            "FDS_ERR_NO_PAGES",
            "FDS_ERR_USER_LIMIT_REACHED",
            "FDS_ERR_CRC_CHECK_FAILED",
            "FDS_ERR_BUSY",
            "FDS_ERR_INTERNAL",
        };
    
        return err_str[ret - NRF_ERROR_FDS_ERR_BASE];
    }
    
    
    static void fds_evt_handler(fds_evt_t const * p_evt)
    {
        if (p_evt->result == NRF_SUCCESS)
        {
            NRF_LOG_GREEN("Event: %s received (NRF_SUCCESS)",
                          fds_evt_str[p_evt->id]);
        }
        else
        {
            NRF_LOG_GREEN("Event: %s received (%s)",
                          fds_evt_str[p_evt->id],
                          fds_err_str(p_evt->result));
        }
    
        switch (p_evt->id)
        {
            case FDS_EVT_INIT:
                if (p_evt->result == NRF_SUCCESS)
                {
                    m_fds_initialized = true;
                }
                break;
    
            case FDS_EVT_WRITE:
            {
                if (p_evt->result == NRF_SUCCESS)
                {
                    NRF_LOG_INFO("Record ID:\t0x%04x",  p_evt->write.record_id);
                    NRF_LOG_INFO("File ID:\t0x%04x",    p_evt->write.file_id);
                    NRF_LOG_INFO("Record key:\t0x%04x", p_evt->write.record_key);
                }
            } break;
    
            case FDS_EVT_DEL_RECORD:
            {
                if (p_evt->result == NRF_SUCCESS)
                {
                    NRF_LOG_INFO("Record ID:\t0x%04x",  p_evt->del.record_id);
                    NRF_LOG_INFO("File ID:\t0x%04x",    p_evt->del.file_id);
                    NRF_LOG_INFO("Record key:\t0x%04x", p_evt->del.record_key);
                }
                m_delete_all.pending = false;
            } break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Begin deleting all records, one by one. */
    void delete_all_begin(void)
    {
        m_delete_all.delete_next = true;
    }
    
    
    /**@brief   Process a delete all command.
     *
     * Delete records, one by one, until no records are left.
     */
    void delete_all_process(void)
    {
        if (   m_delete_all.delete_next
            & !m_delete_all.pending)
        {
            NRF_LOG_INFO("Deleting next record.");
    
            m_delete_all.delete_next = record_delete_next();
            if (!m_delete_all.delete_next)
            {
                NRF_LOG_CYAN("No records left to delete.");
            }
        }
    }
    
    
    
    /**@brief   Initialize the timer. */
    static void timer_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief   Initialize logging. */
    static void log_init(void)
    {
        ret_code_t rc = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(rc);
    }
    
    
    /**@brief   Sleep until an event is received. */
    static void power_manage(void)
    {
    #ifdef SOFTDEVICE_PRESENT
        (void) sd_app_evt_wait();
    #else
        __WFE();
    #endif
    }
    
    
    /**@brief   Wait for fds to initialize. */
    static void wait_for_fds_ready(void)
    {
        while (!m_fds_initialized)
        {
            power_manage();
        }
    }
    
    
    
    
    //end of functions added for fds
    
    
    
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
            uint32_t err_code;
    
            NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
            NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    
            for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
            {
                do
                {
                    err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                    if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                    {
                        NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);
            }
            if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
            {
                while (app_uart_put('\n') == NRF_ERROR_BUSY);
            }
        }
    
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
    
        ret_code_t rc;
        //added functionality from flash fds
        uint32_t   ram_start;
    
        /* Enable the SoftDevice. */
        rc = nrf_sdh_enable_request();
        APP_ERROR_CHECK(rc);
    
         rc = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
         APP_ERROR_CHECK(rc);
    
        //end functionality from flash fds
        
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
    
        // Enable BLE stack.
        rc = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(rc);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    
    }
    
    
    
    
    
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event)
    {
        uint32_t err_code;
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Function for handling app_uart events.
     *
     * @details This function will receive a single character from the app_uart module and append it to
     *          a string. The string will be be sent over BLE when the last character received was a
     *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
     */
    /**@snippet [Handling the data received over UART] */
    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
        static uint8_t index = 0;
        uint32_t       err_code;
    
        switch (p_event->evt_type)
        {
            case APP_UART_DATA_READY:
                UNUSED_VARIABLE(app_uart_get(&data_array[index]));
                index++;
    
                if ((data_array[index - 1] == '\n') ||
                    (data_array[index - 1] == '\r') ||
                    (index >= m_ble_nus_max_data_len))
                {
                    if (index > 1)
                    {
                        NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                        NRF_LOG_HEXDUMP_DEBUG(data_array, index);
    
                        do
                        {
                            uint16_t length = (uint16_t)index;
                            err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                            if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                (err_code != NRF_ERROR_RESOURCES) &&
                                (err_code != NRF_ERROR_NOT_FOUND))
                            {
                                APP_ERROR_CHECK(err_code);
                            }
                        } while (err_code == NRF_ERROR_RESOURCES);
                    }
    
                    index = 0;
                }
                break;
    
            case APP_UART_COMMUNICATION_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_communication);
                break;
    
            case APP_UART_FIFO_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_code);
                break;
    
            default:
                break;
        }
    }
    /**@snippet [Handling the data received over UART] */
    
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER,
            .tx_pin_no    = TX_PIN_NUMBER,
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_event_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    }
    /**@snippet [UART Initialization] */
    
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t startup_event;
    
        uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    ///static void log_init(void)
    //{
       // ret_code_t err_code = NRF_LOG_INIT(NULL);
        //APP_ERROR_CHECK(err_code);
    
       // NRF_LOG_DEFAULT_BACKENDS_INIT();
    //}
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    static void idle_state_handle(void)
    {
        if (NRF_LOG_PROCESS() == false)
        {
            nrf_pwr_mgmt_run();
        }
    }
    
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Application main function.
     */
    
     #define TWI_INSTANCE_ID 0
    
    static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);
    
    void twi_init(void) //configure twi connection
    {
      ret_code_t err_code; 
    
      const nrf_drv_twi_config_t twi_config = {
        .scl = 22, //configure pin 22 to scl
        .sda = 23, //configure pin 23 to sda
        .frequency = NRF_DRV_TWI_FREQ_100K, //nrf freq 100k 250k or 400k
        .interrupt_priority = APP_IRQ_PRIORITY_HIGH, //if using a soft device this has to be changed accordingly
        .clear_bus_init = false 
    
        };
    
        err_code = nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL); //can pass this an interrupt handler
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_twi_enable(&m_twi);
    
    }
    
    uint8_t bcd_decimal(uint8_t x) 
    {
      //return (x - 6 * (x >> 4)) - 256;
      return (x - 6 * (x >> 4)) - 80;
      //sometimes needs -80, sometimes -256
    }    
    
    
    uint8_t* clockTime()
    {
    
        ret_code_t err_code;
        uint8_t address = 0x68; //address of DS1307
        static uint8_t rx_data[20]  = {0}; //buffer for rx twi info. array of 7 uint8_t to hold 7 bytes received over twi
        uint8_t startAddress = 0x00;
      
    
       err_code = nrf_drv_twi_tx(&m_twi, address, &startAddress, 1, true); //transmit to designate the start address
    
       if (NRF_SUCCESS == err_code) //if the starting address was successfully transmitted receive the 7 bytes for the clock time
       {
         err_code = nrf_drv_twi_rx(&m_twi, address, &rx_data, sizeof(rx_data));
       }
    
       rx_data[3] = bcd_decimal(rx_data[3]); //rx[3] holds seconds which is a weird bcd.  must convert then subtract 80 then typecast it to a decimal
       //after 6th entry the clock breaks and needs to be uninit.  on first run bcd_decimal must be run but in subsequent runs it can be removed?
       return (rx_data);
    }
    
    
    
    //event handler if doing nothing
    static void mSleepTimer_timeout_handler(void * p_context)
    {
      sleep_mode_enter();
    }
    
    
    
    //timeout means we have a valid connection
    static void mConnectTimer_timeout_handler(void * p_context)
    {
      const bool startTime = 0;
      nrf_gpio_cfg_input(Button, NRF_GPIO_PIN_PULLUP);
      nrf_gpio_cfg_output(LED4);
      writeTime(startTime);
      nrf_delay_ms(150); 
    
      while(nrf_gpio_pin_read(Button) == 0)
      {
        nrf_gpio_pin_clear(LED4);
      };
    
      nrf_gpio_pin_set(LED4);
    
      validConnectionFlag = true;
    }
    
    void buttonPress()
    {
      uint8_t resetCount = 0;
      const bool startTime = 0;
      const bool endTime = 1;
      nrf_gpio_cfg_output(LED); //configures the led pin as an output pin
      nrf_gpio_cfg_input(Button, NRF_GPIO_PIN_PULLUP); //configures the button pin as an input pin. nrf_gpio_cfg_input takes argument for a pin and an enumerator. 
      APP_TIMER_DEF(mSleepTimer);                                      
      app_timer_create(&mSleepTimer, APP_TIMER_MODE_SINGLE_SHOT, mSleepTimer_timeout_handler); //mSleepTimer handler can be passed by ref like this since the third parameter is already the typedef of an app_timer_timeout_handler_t function
      APP_TIMER_DEF(mConnectTimer);                                      
      app_timer_create(&mConnectTimer, APP_TIMER_MODE_SINGLE_SHOT, mConnectTimer_timeout_handler);
      
       nrf_gpio_pin_set(LED); //turns off the led by setting = to 1, this is now default state
      
    
       while (true) //enter this loop which will act as an event handler for a button press if a button press is received, or timeout and go into sleep mode if DoingNothingTooLong (15 seconds) time is reached
       {
          app_timer_start(mSleepTimer,DoingNothingTooLong, NULL); //timer to put into sleep mode for case of device woken up but no button press is received
            
            while(nrf_gpio_pin_read(Button) == 0 && validConnectionFlag == false) //while the button is being pressed loop. stay here until button is released
            {
              nrf_gpio_pin_clear(LED); //led on while in loop couting to see if valid connection. this light will turn off if start time written successfully
              app_timer_stop(mSleepTimer); //stop the doing nothing timer
              app_timer_start(mConnectTimer, ValidConnectionTime, NULL); //if button held for 10 seconds then timeout and go to mConnect handler otherwise leave loop which starts process over
            };
    
            nrf_gpio_pin_set(LED);
            app_timer_stop(mConnectTimer); //if the hold was less than 10 seconds leave the loop which stops the connect timer, then returns to the doing nothing too long timer
    
            //if the times have been written leave this loop and go back to main
            if(validConnectionFlag == true)
            {
              writeTime(endTime); //writing this in the event handler doesn't work for some reason, but it does here
              nrf_delay_ms(150); 
              break;
            }
            
            //reset memory function for demo. 10 presses of button will clear all records written in flash memory
            resetCount++;
            if(resetCount >= 10)
            {
              deleteAll();
              resetCount = 0;
            }
       
       }//end while loop 
    
    }
    
    
    void writeTime(const bool writeBool)
    {
       #define FILE_ID         0x0005  /* The ID of the file to write the records into. */
       #define RECORD_KEY_1    0x5555  /* A key for the first record. */
    
       ret_code_t rc = NULL;
    
       uint8_t* rx_data = clockTime(); //get the pointer to the array that holds the clockTime
    
       static char intermediate[20] = {0}; //writing to the aligned variable breaks the alignment but memcpy doesn't.  So add data to an intermediate var then memcpy it to the aligned variable and write it to memory.
      __ALIGN(4) static char m_timeStart[20] = {0};
    
    
     
      switch(writeBool) 
      { 
         case 0 : 
            snprintf(intermediate, sizeof(intermediate), "S: %x:%x:%d %x/%x/%x", rx_data[5], rx_data[4], rx_data[3], rx_data[8], rx_data[6], rx_data[9]);
            break;
    
         case 1 : 
            snprintf(intermediate, sizeof(intermediate), "E: %x:%x:%d %x/%x/%x", rx_data[5], rx_data[4], rx_data[3], rx_data[8], rx_data[6], rx_data[9]);
            break;
    
         default :
            break;
      } 
          
       //copy the correct version (start or end) to m_timeStart
       memcpy(m_timeStart, intermediate, sizeof(intermediate));
    
    
       fds_record_t        record;
       fds_record_desc_t   record_desc;
    
    
       // Set up record.
    
       record.file_id           = FILE_ID;
       record.key               = RECORD_KEY_1;
       record.data.p_data       = &m_timeStart;
       /* The following calculation takes into account any eventual remainder of the division. */
       record.data.length_words = (sizeof(m_timeStart) + 3) / 4;
       rc = fds_record_write(&record_desc, &record);
    
       if (rc != NRF_SUCCESS)
       {
        NRF_LOG_INFO("start time didn't work. rc: %x", rc); 
       }
       else
       {
         NRF_LOG_INFO("start time did work"); 
       }
    }
    
    
    void SendTime(void)
    {
    
      fds_flash_record_t  flash_record = {0};
      fds_record_desc_t   desc1 = {0};
      fds_find_token_t    tok1 = {0};
      ret_code_t rc;
    
      /* It is required to zero the token before first use. */
      memset(&tok1, 0x00, sizeof(fds_find_token_t));
    
      while (fds_record_find(FILE_ID, RECORD_KEY_1, &desc1, &tok1) == NRF_SUCCESS) //loop thru all records with this address
      {
        /* Open the record and read its contents. */
        rc = fds_record_open(&desc1, &flash_record);
        APP_ERROR_CHECK(rc);
    
        uint8_t hold[20] = {0}; 
    
        for(int i = 0; i < 20; i++) //get the string from flash memory and typecast it to uint8_t to minimize data tx
        {
          hold[i] = *(volatile uint8_t *)flash_record.p_data;
          flash_record.p_data++;
        }
    
        uint16_t length1 = sizeof(hold);
        rc = ble_nus_data_send(&m_nus, hold, &length1, m_conn_handle);
            
    
        /* Close the record when done reading. */
        rc = fds_record_close(&desc1);
        APP_ERROR_CHECK(rc);
    
      } //end while loop
    }
    
    void deleteAll()
    {
      fds_flash_record_t  flash_record = {0};
      fds_record_desc_t   desc1 = {0};
      fds_find_token_t    tok1 = {0};
      ret_code_t rc;
      memset(&tok1, 0x00, sizeof(fds_find_token_t));
    
      while (fds_record_find(FILE_ID, RECORD_KEY_1, &desc1, &tok1) == NRF_SUCCESS) //loop thru all records with this address
      {
        rc = fds_record_delete(&desc1);
        NRF_LOG_INFO("file deleted"); 
        nrf_delay_ms(100);
    
        if (rc != NRF_SUCCESS)
        {
          NRF_LOG_INFO("delete failed, rc: %x", rc); 
        }
    
      } //end while loop
    
      rc = fds_gc();
      if(rc != NRF_SUCCESS)
      {
        NRF_LOG_INFO("garbage failed, rc: %x", rc);
      }
      else
      {
        NRF_LOG_INFO("garbage succeeded"); 
      }
    }
    
    
    
    int main(void)
    {
        bool erase_bonds;
        ret_code_t rc;
    
        // Initialize.
        twi_init();
        uart_init();
        log_init();
        timers_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
    
    
        /* Register first to receive an event when initialization is complete. */
        (void) fds_register(fds_evt_handler);
    
    
        rc = fds_init();
        APP_ERROR_CHECK(rc);
    
        /* Wait for fds to initialize. */
        wait_for_fds_ready();
    
        // Start execution.
        printf("\r\nUART started.\r\n");
    
        //turn on LED3 while on and not in sleep mode. added to make sure device isn't running unnecessarily
        nrf_gpio_cfg_output(LED2);
        nrf_gpio_pin_clear(LED2);
    
        NRF_LOG_INFO("Debug logging for UART over RTT started.");
    
        //flow of events: init everyting > begin advertising > write the start time to memory > wait for button release event > on button release event record the end time 
        // >send the entire log of start and end times over ble notification > go to sleep 5 seconds later
    
        //button press waits for a button press event or times out and goes to sleep mode if no button press is received in 15 seconds
        buttonPress(); 
    
        //save power by only advertising after the data has been written to memory and is ready to send
        advertising_start(); 
    
        //advertise for 15 seconds then try to send the data
        nrf_delay_ms(15000);
    
        //SendTime sends the entire memory, should add a condition to make sure that it's connected to BLE, potentially only send new entries etc.
        SendTime(); 
    
        //wait 5 seconds after sending the data before entering sleep mode, just here to give time to read in devtools for debugging
        nrf_delay_ms(15000);
    
        sleep_mode_enter();
    
    
        // Enter main loop.
        for (;;)
        {
            idle_state_handle();
        }
    }
    
    

    Thanks for the help!

Reply
  • Depending on your button interrupt priority vs rtc interrupt priority, assuming GPIOTE interrupt priority is higher, the chip will be woken up first in the button interrupt handler context and then returns to other contexts.

    How do I check/alter these priorities?  I'm using a high priority for my TWI interface to get the time from the RTC but I'm not sure how to check or change the priorities for GPIOTE/Button interrupt.

    I didn't post the full code because I'm using a PCF8523 RTC to get the time so I didn't think others would be able to run it.  Since posing this I added some debounce functionality to the button with timers and updated the code.  This for some reason solved the problem with writing the start time twice. 

    The debounce functions basically just check if the button press lasted for longer than 5 seconds, and only then complete the writing functions.  

    Starting the program with the button in a pressed state still causes the following behavior:

    1.) wake up with button pressed

    2.) go to sleep

    3.) wake up again with button still pressed

    4.) record start and end time as intended

    5.) run as expected

    I can't recreate the double writing bug with the added debounce function so I can't look into the call stack like you asked, but I also don't have that problem anymore either.  I'd appreciate any insight you have about why it restarts if the program wakes up in state where the button is pressed.  The priorities you mentioned seem like a good candidate.

    Here is the full program code:

    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    
    //added to handle fds
    #include "fds.h"
    #include "app_timer.h"
    #include "app_error.h"
    #include "nrf_cli.h"
    #include "fds_example.h"
    
    //end of added to handle fds
    #include <stdbool.h>
    #include "nrf_delay.h"
    #include "nrf_gpio.h"
    
    #define LED 18
    #define LED2 19
    #define LED4 20
    #define Button 14
    //added to handle i/o
    
    //includes for twi
    
    #include <stdio.h>
    #include "boards.h"
    #include "app_util_platform.h"
    #include "app_error.h"
    #include "nrf_drv_twi.h"
    
    
    #include "nrf_log_default_backends.h"
    
    uint8_t* clockTime();
    
    
    //end includes for twi
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "Nordic_UART"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */
    
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
    
    #define DoingNothingTooLong  APP_TIMER_TICKS(15000)    
    #define ValidConnectionTime  APP_TIMER_TICKS(5000)                               //15 seconds in timer ticks, sleep if this condition is met
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    
    
    //global vars
    bool validConnectionFlag = false;
    
    
    //forward declarations
    void writeTime(const bool writeBool);
    void deleteAll();
    
    
    
    /* A tag identifying the SoftDevice BLE configuration. */
    #define APP_BLE_CONN_CFG_TAG    1
    
    /* Array to map FDS events to strings. */
    static char const * fds_evt_str[] =
    {
        "FDS_EVT_INIT",
        "FDS_EVT_WRITE",
        "FDS_EVT_UPDATE",
        "FDS_EVT_DEL_RECORD",
        "FDS_EVT_DEL_FILE",
        "FDS_EVT_GC",
    };
    
    /* Dummy configuration data. */
    static configuration_t m_dummy_cfg =
    {
        .config1_on  = false,
        .config2_on  = true,
        .boot_count  = 0x0,
        .device_name = "dummy",
    };
    
    /* A record containing dummy configuration data. */
    static fds_record_t const m_dummy_record =
    {
        .file_id           = CONFIG_FILE,
        .key               = CONFIG_REC_KEY,
        .data.p_data       = &m_dummy_cfg,
        /* The length of a record is always expressed in 4-byte units (words). */
        .data.length_words = (sizeof(m_dummy_cfg) + 3) / sizeof(uint32_t),
    };
    
    /* Keep track of the progress of a delete_all operation. */
    static struct
    {
        bool delete_next;   //!< Delete next record.
        bool pending;       //!< Waiting for an fds FDS_EVT_DEL_RECORD event, to delete the next record.
    } m_delete_all;
    
    /* Flag to check fds initialization. */
    static bool volatile m_fds_initialized;
    
    
    const char *fds_err_str(ret_code_t ret)
    {
        /* Array to map FDS return values to strings. */
        static char const * err_str[] =
        {
            "FDS_ERR_OPERATION_TIMEOUT",
            "FDS_ERR_NOT_INITIALIZED",
            "FDS_ERR_UNALIGNED_ADDR",
            "FDS_ERR_INVALID_ARG",
            "FDS_ERR_NULL_ARG",
            "FDS_ERR_NO_OPEN_RECORDS",
            "FDS_ERR_NO_SPACE_IN_FLASH",
            "FDS_ERR_NO_SPACE_IN_QUEUES",
            "FDS_ERR_RECORD_TOO_LARGE",
            "FDS_ERR_NOT_FOUND",
            "FDS_ERR_NO_PAGES",
            "FDS_ERR_USER_LIMIT_REACHED",
            "FDS_ERR_CRC_CHECK_FAILED",
            "FDS_ERR_BUSY",
            "FDS_ERR_INTERNAL",
        };
    
        return err_str[ret - NRF_ERROR_FDS_ERR_BASE];
    }
    
    
    static void fds_evt_handler(fds_evt_t const * p_evt)
    {
        if (p_evt->result == NRF_SUCCESS)
        {
            NRF_LOG_GREEN("Event: %s received (NRF_SUCCESS)",
                          fds_evt_str[p_evt->id]);
        }
        else
        {
            NRF_LOG_GREEN("Event: %s received (%s)",
                          fds_evt_str[p_evt->id],
                          fds_err_str(p_evt->result));
        }
    
        switch (p_evt->id)
        {
            case FDS_EVT_INIT:
                if (p_evt->result == NRF_SUCCESS)
                {
                    m_fds_initialized = true;
                }
                break;
    
            case FDS_EVT_WRITE:
            {
                if (p_evt->result == NRF_SUCCESS)
                {
                    NRF_LOG_INFO("Record ID:\t0x%04x",  p_evt->write.record_id);
                    NRF_LOG_INFO("File ID:\t0x%04x",    p_evt->write.file_id);
                    NRF_LOG_INFO("Record key:\t0x%04x", p_evt->write.record_key);
                }
            } break;
    
            case FDS_EVT_DEL_RECORD:
            {
                if (p_evt->result == NRF_SUCCESS)
                {
                    NRF_LOG_INFO("Record ID:\t0x%04x",  p_evt->del.record_id);
                    NRF_LOG_INFO("File ID:\t0x%04x",    p_evt->del.file_id);
                    NRF_LOG_INFO("Record key:\t0x%04x", p_evt->del.record_key);
                }
                m_delete_all.pending = false;
            } break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Begin deleting all records, one by one. */
    void delete_all_begin(void)
    {
        m_delete_all.delete_next = true;
    }
    
    
    /**@brief   Process a delete all command.
     *
     * Delete records, one by one, until no records are left.
     */
    void delete_all_process(void)
    {
        if (   m_delete_all.delete_next
            & !m_delete_all.pending)
        {
            NRF_LOG_INFO("Deleting next record.");
    
            m_delete_all.delete_next = record_delete_next();
            if (!m_delete_all.delete_next)
            {
                NRF_LOG_CYAN("No records left to delete.");
            }
        }
    }
    
    
    
    /**@brief   Initialize the timer. */
    static void timer_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief   Initialize logging. */
    static void log_init(void)
    {
        ret_code_t rc = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(rc);
    }
    
    
    /**@brief   Sleep until an event is received. */
    static void power_manage(void)
    {
    #ifdef SOFTDEVICE_PRESENT
        (void) sd_app_evt_wait();
    #else
        __WFE();
    #endif
    }
    
    
    /**@brief   Wait for fds to initialize. */
    static void wait_for_fds_ready(void)
    {
        while (!m_fds_initialized)
        {
            power_manage();
        }
    }
    
    
    
    
    //end of functions added for fds
    
    
    
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
            uint32_t err_code;
    
            NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
            NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    
            for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
            {
                do
                {
                    err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                    if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                    {
                        NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);
            }
            if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
            {
                while (app_uart_put('\n') == NRF_ERROR_BUSY);
            }
        }
    
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
    
        ret_code_t rc;
        //added functionality from flash fds
        uint32_t   ram_start;
    
        /* Enable the SoftDevice. */
        rc = nrf_sdh_enable_request();
        APP_ERROR_CHECK(rc);
    
         rc = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
         APP_ERROR_CHECK(rc);
    
        //end functionality from flash fds
        
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
    
        // Enable BLE stack.
        rc = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(rc);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    
    }
    
    
    
    
    
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event)
    {
        uint32_t err_code;
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Function for handling app_uart events.
     *
     * @details This function will receive a single character from the app_uart module and append it to
     *          a string. The string will be be sent over BLE when the last character received was a
     *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
     */
    /**@snippet [Handling the data received over UART] */
    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
        static uint8_t index = 0;
        uint32_t       err_code;
    
        switch (p_event->evt_type)
        {
            case APP_UART_DATA_READY:
                UNUSED_VARIABLE(app_uart_get(&data_array[index]));
                index++;
    
                if ((data_array[index - 1] == '\n') ||
                    (data_array[index - 1] == '\r') ||
                    (index >= m_ble_nus_max_data_len))
                {
                    if (index > 1)
                    {
                        NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                        NRF_LOG_HEXDUMP_DEBUG(data_array, index);
    
                        do
                        {
                            uint16_t length = (uint16_t)index;
                            err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                            if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                (err_code != NRF_ERROR_RESOURCES) &&
                                (err_code != NRF_ERROR_NOT_FOUND))
                            {
                                APP_ERROR_CHECK(err_code);
                            }
                        } while (err_code == NRF_ERROR_RESOURCES);
                    }
    
                    index = 0;
                }
                break;
    
            case APP_UART_COMMUNICATION_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_communication);
                break;
    
            case APP_UART_FIFO_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_code);
                break;
    
            default:
                break;
        }
    }
    /**@snippet [Handling the data received over UART] */
    
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER,
            .tx_pin_no    = TX_PIN_NUMBER,
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_event_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    }
    /**@snippet [UART Initialization] */
    
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t startup_event;
    
        uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    ///static void log_init(void)
    //{
       // ret_code_t err_code = NRF_LOG_INIT(NULL);
        //APP_ERROR_CHECK(err_code);
    
       // NRF_LOG_DEFAULT_BACKENDS_INIT();
    //}
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    static void idle_state_handle(void)
    {
        if (NRF_LOG_PROCESS() == false)
        {
            nrf_pwr_mgmt_run();
        }
    }
    
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Application main function.
     */
    
     #define TWI_INSTANCE_ID 0
    
    static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);
    
    void twi_init(void) //configure twi connection
    {
      ret_code_t err_code; 
    
      const nrf_drv_twi_config_t twi_config = {
        .scl = 22, //configure pin 22 to scl
        .sda = 23, //configure pin 23 to sda
        .frequency = NRF_DRV_TWI_FREQ_100K, //nrf freq 100k 250k or 400k
        .interrupt_priority = APP_IRQ_PRIORITY_HIGH, //if using a soft device this has to be changed accordingly
        .clear_bus_init = false 
    
        };
    
        err_code = nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL); //can pass this an interrupt handler
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_twi_enable(&m_twi);
    
    }
    
    uint8_t bcd_decimal(uint8_t x) 
    {
      //return (x - 6 * (x >> 4)) - 256;
      return (x - 6 * (x >> 4)) - 80;
      //sometimes needs -80, sometimes -256
    }    
    
    
    uint8_t* clockTime()
    {
    
        ret_code_t err_code;
        uint8_t address = 0x68; //address of DS1307
        static uint8_t rx_data[20]  = {0}; //buffer for rx twi info. array of 7 uint8_t to hold 7 bytes received over twi
        uint8_t startAddress = 0x00;
      
    
       err_code = nrf_drv_twi_tx(&m_twi, address, &startAddress, 1, true); //transmit to designate the start address
    
       if (NRF_SUCCESS == err_code) //if the starting address was successfully transmitted receive the 7 bytes for the clock time
       {
         err_code = nrf_drv_twi_rx(&m_twi, address, &rx_data, sizeof(rx_data));
       }
    
       rx_data[3] = bcd_decimal(rx_data[3]); //rx[3] holds seconds which is a weird bcd.  must convert then subtract 80 then typecast it to a decimal
       //after 6th entry the clock breaks and needs to be uninit.  on first run bcd_decimal must be run but in subsequent runs it can be removed?
       return (rx_data);
    }
    
    
    
    //event handler if doing nothing
    static void mSleepTimer_timeout_handler(void * p_context)
    {
      sleep_mode_enter();
    }
    
    
    
    //timeout means we have a valid connection
    static void mConnectTimer_timeout_handler(void * p_context)
    {
      const bool startTime = 0;
      nrf_gpio_cfg_input(Button, NRF_GPIO_PIN_PULLUP);
      nrf_gpio_cfg_output(LED4);
      writeTime(startTime);
      nrf_delay_ms(150); 
    
      while(nrf_gpio_pin_read(Button) == 0)
      {
        nrf_gpio_pin_clear(LED4);
      };
    
      nrf_gpio_pin_set(LED4);
    
      validConnectionFlag = true;
    }
    
    void buttonPress()
    {
      uint8_t resetCount = 0;
      const bool startTime = 0;
      const bool endTime = 1;
      nrf_gpio_cfg_output(LED); //configures the led pin as an output pin
      nrf_gpio_cfg_input(Button, NRF_GPIO_PIN_PULLUP); //configures the button pin as an input pin. nrf_gpio_cfg_input takes argument for a pin and an enumerator. 
      APP_TIMER_DEF(mSleepTimer);                                      
      app_timer_create(&mSleepTimer, APP_TIMER_MODE_SINGLE_SHOT, mSleepTimer_timeout_handler); //mSleepTimer handler can be passed by ref like this since the third parameter is already the typedef of an app_timer_timeout_handler_t function
      APP_TIMER_DEF(mConnectTimer);                                      
      app_timer_create(&mConnectTimer, APP_TIMER_MODE_SINGLE_SHOT, mConnectTimer_timeout_handler);
      
       nrf_gpio_pin_set(LED); //turns off the led by setting = to 1, this is now default state
      
    
       while (true) //enter this loop which will act as an event handler for a button press if a button press is received, or timeout and go into sleep mode if DoingNothingTooLong (15 seconds) time is reached
       {
          app_timer_start(mSleepTimer,DoingNothingTooLong, NULL); //timer to put into sleep mode for case of device woken up but no button press is received
            
            while(nrf_gpio_pin_read(Button) == 0 && validConnectionFlag == false) //while the button is being pressed loop. stay here until button is released
            {
              nrf_gpio_pin_clear(LED); //led on while in loop couting to see if valid connection. this light will turn off if start time written successfully
              app_timer_stop(mSleepTimer); //stop the doing nothing timer
              app_timer_start(mConnectTimer, ValidConnectionTime, NULL); //if button held for 10 seconds then timeout and go to mConnect handler otherwise leave loop which starts process over
            };
    
            nrf_gpio_pin_set(LED);
            app_timer_stop(mConnectTimer); //if the hold was less than 10 seconds leave the loop which stops the connect timer, then returns to the doing nothing too long timer
    
            //if the times have been written leave this loop and go back to main
            if(validConnectionFlag == true)
            {
              writeTime(endTime); //writing this in the event handler doesn't work for some reason, but it does here
              nrf_delay_ms(150); 
              break;
            }
            
            //reset memory function for demo. 10 presses of button will clear all records written in flash memory
            resetCount++;
            if(resetCount >= 10)
            {
              deleteAll();
              resetCount = 0;
            }
       
       }//end while loop 
    
    }
    
    
    void writeTime(const bool writeBool)
    {
       #define FILE_ID         0x0005  /* The ID of the file to write the records into. */
       #define RECORD_KEY_1    0x5555  /* A key for the first record. */
    
       ret_code_t rc = NULL;
    
       uint8_t* rx_data = clockTime(); //get the pointer to the array that holds the clockTime
    
       static char intermediate[20] = {0}; //writing to the aligned variable breaks the alignment but memcpy doesn't.  So add data to an intermediate var then memcpy it to the aligned variable and write it to memory.
      __ALIGN(4) static char m_timeStart[20] = {0};
    
    
     
      switch(writeBool) 
      { 
         case 0 : 
            snprintf(intermediate, sizeof(intermediate), "S: %x:%x:%d %x/%x/%x", rx_data[5], rx_data[4], rx_data[3], rx_data[8], rx_data[6], rx_data[9]);
            break;
    
         case 1 : 
            snprintf(intermediate, sizeof(intermediate), "E: %x:%x:%d %x/%x/%x", rx_data[5], rx_data[4], rx_data[3], rx_data[8], rx_data[6], rx_data[9]);
            break;
    
         default :
            break;
      } 
          
       //copy the correct version (start or end) to m_timeStart
       memcpy(m_timeStart, intermediate, sizeof(intermediate));
    
    
       fds_record_t        record;
       fds_record_desc_t   record_desc;
    
    
       // Set up record.
    
       record.file_id           = FILE_ID;
       record.key               = RECORD_KEY_1;
       record.data.p_data       = &m_timeStart;
       /* The following calculation takes into account any eventual remainder of the division. */
       record.data.length_words = (sizeof(m_timeStart) + 3) / 4;
       rc = fds_record_write(&record_desc, &record);
    
       if (rc != NRF_SUCCESS)
       {
        NRF_LOG_INFO("start time didn't work. rc: %x", rc); 
       }
       else
       {
         NRF_LOG_INFO("start time did work"); 
       }
    }
    
    
    void SendTime(void)
    {
    
      fds_flash_record_t  flash_record = {0};
      fds_record_desc_t   desc1 = {0};
      fds_find_token_t    tok1 = {0};
      ret_code_t rc;
    
      /* It is required to zero the token before first use. */
      memset(&tok1, 0x00, sizeof(fds_find_token_t));
    
      while (fds_record_find(FILE_ID, RECORD_KEY_1, &desc1, &tok1) == NRF_SUCCESS) //loop thru all records with this address
      {
        /* Open the record and read its contents. */
        rc = fds_record_open(&desc1, &flash_record);
        APP_ERROR_CHECK(rc);
    
        uint8_t hold[20] = {0}; 
    
        for(int i = 0; i < 20; i++) //get the string from flash memory and typecast it to uint8_t to minimize data tx
        {
          hold[i] = *(volatile uint8_t *)flash_record.p_data;
          flash_record.p_data++;
        }
    
        uint16_t length1 = sizeof(hold);
        rc = ble_nus_data_send(&m_nus, hold, &length1, m_conn_handle);
            
    
        /* Close the record when done reading. */
        rc = fds_record_close(&desc1);
        APP_ERROR_CHECK(rc);
    
      } //end while loop
    }
    
    void deleteAll()
    {
      fds_flash_record_t  flash_record = {0};
      fds_record_desc_t   desc1 = {0};
      fds_find_token_t    tok1 = {0};
      ret_code_t rc;
      memset(&tok1, 0x00, sizeof(fds_find_token_t));
    
      while (fds_record_find(FILE_ID, RECORD_KEY_1, &desc1, &tok1) == NRF_SUCCESS) //loop thru all records with this address
      {
        rc = fds_record_delete(&desc1);
        NRF_LOG_INFO("file deleted"); 
        nrf_delay_ms(100);
    
        if (rc != NRF_SUCCESS)
        {
          NRF_LOG_INFO("delete failed, rc: %x", rc); 
        }
    
      } //end while loop
    
      rc = fds_gc();
      if(rc != NRF_SUCCESS)
      {
        NRF_LOG_INFO("garbage failed, rc: %x", rc);
      }
      else
      {
        NRF_LOG_INFO("garbage succeeded"); 
      }
    }
    
    
    
    int main(void)
    {
        bool erase_bonds;
        ret_code_t rc;
    
        // Initialize.
        twi_init();
        uart_init();
        log_init();
        timers_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
    
    
        /* Register first to receive an event when initialization is complete. */
        (void) fds_register(fds_evt_handler);
    
    
        rc = fds_init();
        APP_ERROR_CHECK(rc);
    
        /* Wait for fds to initialize. */
        wait_for_fds_ready();
    
        // Start execution.
        printf("\r\nUART started.\r\n");
    
        //turn on LED3 while on and not in sleep mode. added to make sure device isn't running unnecessarily
        nrf_gpio_cfg_output(LED2);
        nrf_gpio_pin_clear(LED2);
    
        NRF_LOG_INFO("Debug logging for UART over RTT started.");
    
        //flow of events: init everyting > begin advertising > write the start time to memory > wait for button release event > on button release event record the end time 
        // >send the entire log of start and end times over ble notification > go to sleep 5 seconds later
    
        //button press waits for a button press event or times out and goes to sleep mode if no button press is received in 15 seconds
        buttonPress(); 
    
        //save power by only advertising after the data has been written to memory and is ready to send
        advertising_start(); 
    
        //advertise for 15 seconds then try to send the data
        nrf_delay_ms(15000);
    
        //SendTime sends the entire memory, should add a condition to make sure that it's connected to BLE, potentially only send new entries etc.
        SendTime(); 
    
        //wait 5 seconds after sending the data before entering sleep mode, just here to give time to read in devtools for debugging
        nrf_delay_ms(15000);
    
        sleep_mode_enter();
    
    
        // Enter main loop.
        for (;;)
        {
            idle_state_handle();
        }
    }
    
    

    Thanks for the help!

Children
Related