Hello
I need to combine USB CDC ACM and BLE Central role on the nrf5340dk, using nrf Connect SDK v1.9.1. I started from Peripheral UART Sample with the USB CDC ACM extension and then I changed the configuration in prj.conf to the Central role, acording to BLE Central Sample like this:
# Enable the UART driver CONFIG_UART_ASYNC_API=y CONFIG_NRFX_UARTE0=y CONFIG_SERIAL=y CONFIG_GPIO=y # Make sure printk is printing to the UART console CONFIG_CONSOLE=y CONFIG_UART_CONSOLE=y CONFIG_HEAP_MEM_POOL_SIZE=2048 CONFIG_BT=y CONFIG_BT_CENTRAL=y CONFIG_BT_SMP=y CONFIG_BT_GATT_CLIENT=y CONFIG_BT_DEVICE_NAME="Nordic_UART_Service" CONFIG_BT_DEVICE_APPEARANCE=833 # Enable the NUS service CONFIG_BT_NUS=y CONFIG_BT_NUS_CLIENT=y CONFIG_BT_SCAN=y CONFIG_BT_SCAN_FILTER_ENABLE=y CONFIG_BT_SCAN_UUID_CNT=1 CONFIG_BT_GATT_DM=y CONFIG_HEAP_MEM_POOL_SIZE=2048 # Enable bonding CONFIG_BT_SETTINGS=y CONFIG_FLASH=y CONFIG_FLASH_PAGE_LAYOUT=y CONFIG_FLASH_MAP=y CONFIG_NVS=y CONFIG_SETTINGS=y # Enable DK LED and Buttons library CONFIG_DK_LIBRARY=y # This example requires more workqueue stack CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE=2048 # Config logger CONFIG_LOG=y CONFIG_USE_SEGGER_RTT=y CONFIG_LOG_BACKEND_RTT=y CONFIG_LOG_BACKEND_UART=n CONFIG_ASSERT=y
I also made changes in the main, to act as Central:
#include "uart_async_adapter.h" #include <zephyr/types.h> #include <zephyr.h> #include <drivers/uart.h> #include <usb/usb_device.h> #include <device.h> #include <soc.h> #include <bluetooth/bluetooth.h> #include <bluetooth/uuid.h> #include <bluetooth/gatt.h> #include <bluetooth/hci.h> #include <bluetooth/services/nus.h> #include <dk_buttons_and_leds.h> #include <settings/settings.h> #include <stdio.h> #include <logging/log.h> #include <errno.h> //#include <zephyr.h> #include <sys/byteorder.h> #include <sys/printk.h> #include <bluetooth/conn.h> #include <bluetooth/services/nus_client.h> #include <bluetooth/gatt_dm.h> #include <bluetooth/scan.h> #define LOG_MODULE_NAME central_uart LOG_MODULE_REGISTER(LOG_MODULE_NAME); /* UART payload buffer element size. */ #define UART_BUF_SIZE 20 #define STACKSIZE CONFIG_BT_NUS_THREAD_STACK_SIZE #define PRIORITY 7 #define DEVICE_NAME CONFIG_BT_DEVICE_NAME #define DEVICE_NAME_LEN (sizeof(DEVICE_NAME) - 1) #define RUN_STATUS_LED DK_LED1 #define RUN_LED_BLINK_INTERVAL 1000 #define CON_STATUS_LED DK_LED2 #define KEY_PASSKEY_ACCEPT DK_BTN1_MSK #define KEY_PASSKEY_REJECT DK_BTN2_MSK #define UART_WAIT_FOR_BUF_DELAY K_MSEC(50) #define UART_WAIT_FOR_RX CONFIG_BT_NUS_UART_RX_WAIT_TIME #define NUS_WRITE_TIMEOUT K_MSEC(150) #define UART_WAIT_FOR_BUF_DELAY K_MSEC(50) #define UART_RX_TIMEOUT 50 static K_SEM_DEFINE(ble_init_ok, 0, 1); static const struct device *uart; static struct k_work_delayable uart_work; K_SEM_DEFINE(nus_write_sem, 0, 1); struct uart_data_t { void *fifo_reserved; uint8_t data[UART_BUF_SIZE]; uint16_t len; }; static K_FIFO_DEFINE(fifo_uart_tx_data); static K_FIFO_DEFINE(fifo_uart_rx_data); static struct bt_conn *default_conn; static struct bt_nus_client nus_client; #if CONFIG_BT_NUS_UART_ASYNC_ADAPTER UART_ASYNC_ADAPTER_INST_DEFINE(async_adapter); #else static const struct device *const async_adapter; #endif static void ble_data_sent(struct bt_nus_client *nus, uint8_t err, const uint8_t *const data, uint16_t len) { ARG_UNUSED(nus); struct uart_data_t *buf; /* Retrieve buffer context. */ buf = CONTAINER_OF(data, struct uart_data_t, data); k_free(buf); k_sem_give(&nus_write_sem); if (err) { LOG_WRN("ATT error code: 0x%02X", err); } } static uint8_t ble_data_received(struct bt_nus_client *nus, const uint8_t *data, uint16_t len) { ARG_UNUSED(nus); int err; for (uint16_t pos = 0; pos != len;) { struct uart_data_t *tx = k_malloc(sizeof(*tx)); if (!tx) { LOG_WRN("Not able to allocate UART send data buffer"); return BT_GATT_ITER_CONTINUE; } /* Keep the last byte of TX buffer for potential LF char. */ size_t tx_data_size = sizeof(tx->data) - 1; if ((len - pos) > tx_data_size) { tx->len = tx_data_size; } else { tx->len = (len - pos); } memcpy(tx->data, &data[pos], tx->len); pos += tx->len; /* Append the LF character when the CR character triggered * transmission from the peer. */ if ((pos == len) && (data[len - 1] == '\r')) { tx->data[tx->len] = '\n'; tx->len++; } err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS); if (err) { k_fifo_put(&fifo_uart_tx_data, tx); } } return BT_GATT_ITER_CONTINUE; } static void uart_cb(const struct device *dev, struct uart_event *evt, void *user_data) { ARG_UNUSED(dev); static uint8_t *current_buf; static size_t aborted_len; static bool buf_release; struct uart_data_t *buf; static uint8_t *aborted_buf; switch (evt->type) { case UART_TX_DONE: LOG_DBG("tx_done"); if ((evt->data.tx.len == 0) || (!evt->data.tx.buf)) { return; } if (aborted_buf) { buf = CONTAINER_OF(aborted_buf, struct uart_data_t, data); aborted_buf = NULL; aborted_len = 0; } else { buf = CONTAINER_OF(evt->data.tx.buf, struct uart_data_t, data); } k_free(buf); buf = k_fifo_get(&fifo_uart_tx_data, K_NO_WAIT); if (!buf) { return; } if (uart_tx(uart, buf->data, buf->len, SYS_FOREVER_MS)) { LOG_WRN("Failed to send data over UART"); } break; case UART_RX_RDY: LOG_DBG("rx_rdy"); buf = CONTAINER_OF(evt->data.rx.buf, struct uart_data_t, data); buf->len += evt->data.rx.len; buf_release = false; if (buf->len == UART_BUF_SIZE) { k_fifo_put(&fifo_uart_rx_data, buf); } else if ((evt->data.rx.buf[buf->len - 1] == '\n') || (evt->data.rx.buf[buf->len - 1] == '\r')) { k_fifo_put(&fifo_uart_rx_data, buf); current_buf = evt->data.rx.buf; buf_release = true; uart_rx_disable(uart); } break; case UART_RX_DISABLED: LOG_DBG("rx_disabled"); buf = k_malloc(sizeof(*buf)); if (buf) { buf->len = 0; } else { LOG_WRN("Not able to allocate UART receive buffer"); k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY); return; } uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_WAIT_FOR_RX); break; case UART_RX_BUF_REQUEST: LOG_DBG("rx_buf_request"); buf = k_malloc(sizeof(*buf)); if (buf) { buf->len = 0; uart_rx_buf_rsp(uart, buf->data, sizeof(buf->data)); } else { LOG_WRN("Not able to allocate UART receive buffer"); } break; case UART_RX_BUF_RELEASED: LOG_DBG("rx_buf_released"); buf = CONTAINER_OF(evt->data.rx_buf.buf, struct uart_data_t, data); if (buf_release && (current_buf != evt->data.rx_buf.buf)) { k_free(buf); buf_release = false; current_buf = NULL; } break; case UART_TX_ABORTED: LOG_DBG("tx_aborted"); if (!aborted_buf) { aborted_buf = (uint8_t *)evt->data.tx.buf; } aborted_len += evt->data.tx.len; buf = CONTAINER_OF(aborted_buf, struct uart_data_t, data); uart_tx(uart, &buf->data[aborted_len], buf->len - aborted_len, SYS_FOREVER_MS); break; default: break; } } static void uart_work_handler(struct k_work *item) { struct uart_data_t *buf; buf = k_malloc(sizeof(*buf)); if (buf) { buf->len = 0; } else { LOG_WRN("Not able to allocate UART receive buffer"); k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY); return; } uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_WAIT_FOR_RX); } static bool uart_test_async_api(const struct device *dev) { const struct uart_driver_api *api = (const struct uart_driver_api *)dev->api; return (api->callback_set != NULL); } static int uart_init(void) { int err; int pos; struct uart_data_t *rx; struct uart_data_t *tx; uart = device_get_binding(DT_LABEL(DT_NODELABEL(uart0))); if (!uart) { LOG_ERR("UART binding failed"); return -ENXIO; } if (IS_ENABLED(CONFIG_USB_DEVICE_STACK)) { err = usb_enable(NULL); if (err) { LOG_ERR("Failed to enable USB"); return err; } } rx = k_malloc(sizeof(*rx)); if (rx) { rx->len = 0; } else { return -ENOMEM; } k_work_init_delayable(&uart_work, uart_work_handler); if (IS_ENABLED(CONFIG_BT_NUS_UART_ASYNC_ADAPTER) && !uart_test_async_api(uart)) { /* Implement API adapter */ uart_async_adapter_init(async_adapter, uart); uart = async_adapter; } err = uart_callback_set(uart, uart_cb, NULL); if (err) { LOG_ERR("Cannot initialize UART callback"); return err; } if (IS_ENABLED(CONFIG_UART_LINE_CTRL)) { LOG_INF("Wait for DTR"); while (true) { uint32_t dtr = 0; uart_line_ctrl_get(uart, UART_LINE_CTRL_DTR, &dtr); if (dtr) { break; } //Give CPU resources to low priority threads. k_sleep(K_MSEC(100)); } LOG_INF("DTR set"); err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DCD, 1); if (err) { LOG_WRN("Failed to set DCD, ret code %d", err); } err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DSR, 1); if (err) { LOG_WRN("Failed to set DSR, ret code %d", err); } } tx = k_malloc(sizeof(*tx)); if (tx) { pos = snprintf(tx->data, sizeof(tx->data), "Starting Nordic UART service example\r\n"); if ((pos < 0) || (pos >= sizeof(tx->data))) { k_free(tx); LOG_ERR("snprintf returned %d", pos); return -ENOMEM; } tx->len = pos; } else { return -ENOMEM; } err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS); if (err) { LOG_ERR("Cannot display welcome message (err: %d)", err); return err; } return uart_rx_enable(uart, rx->data, sizeof(rx->data), UART_RX_TIMEOUT); } static void discovery_complete(struct bt_gatt_dm *dm, void *context) { struct bt_nus_client *nus = context; LOG_INF("Service discovery completed"); bt_gatt_dm_data_print(dm); bt_nus_handles_assign(dm, nus); bt_nus_subscribe_receive(nus); bt_gatt_dm_data_release(dm); } static void discovery_service_not_found(struct bt_conn *conn, void *context) { LOG_INF("Service not found"); } static void discovery_error(struct bt_conn *conn, int err, void *context) { LOG_WRN("Error while discovering GATT database: (%d)", err); } struct bt_gatt_dm_cb discovery_cb = { .completed = discovery_complete, .service_not_found = discovery_service_not_found, .error_found = discovery_error, }; static void gatt_discover(struct bt_conn *conn) { int err; if (conn != default_conn) { return; } err = bt_gatt_dm_start(conn, BT_UUID_NUS_SERVICE, &discovery_cb, &nus_client); if (err) { LOG_ERR("could not start the discovery procedure, error " "code: %d", err); } } static void exchange_func(struct bt_conn *conn, uint8_t err, struct bt_gatt_exchange_params *params) { if (!err) { LOG_INF("MTU exchange done"); } else { LOG_WRN("MTU exchange failed (err %" PRIu8 ")", err); } } static void connected(struct bt_conn *conn, uint8_t conn_err) { char addr[BT_ADDR_LE_STR_LEN]; int err; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); if (conn_err) { LOG_INF("Failed to connect to %s (%d)", log_strdup(addr), conn_err); if (default_conn == conn) { bt_conn_unref(default_conn); default_conn = NULL; err = bt_scan_start(BT_SCAN_TYPE_SCAN_ACTIVE); if (err) { LOG_ERR("Scanning failed to start (err %d)", err); } } return; } LOG_INF("Connected: %s", log_strdup(addr)); static struct bt_gatt_exchange_params exchange_params; exchange_params.func = exchange_func; err = bt_gatt_exchange_mtu(conn, &exchange_params); if (err) { LOG_WRN("MTU exchange failed (err %d)", err); } err = bt_conn_set_security(conn, BT_SECURITY_L2); if (err) { LOG_WRN("Failed to set security: %d", err); gatt_discover(conn); } err = bt_scan_stop(); if ((!err) && (err != -EALREADY)) { LOG_ERR("Stop LE scan failed (err %d)", err); } } static void disconnected(struct bt_conn *conn, uint8_t reason) { char addr[BT_ADDR_LE_STR_LEN]; int err; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_INF("Disconnected: %s (reason %u)", log_strdup(addr), reason); if (default_conn != conn) { return; } bt_conn_unref(default_conn); default_conn = NULL; err = bt_scan_start(BT_SCAN_TYPE_SCAN_ACTIVE); if (err) { LOG_ERR("Scanning failed to start (err %d)", err); } } static void security_changed(struct bt_conn *conn, bt_security_t level, enum bt_security_err err) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); if (!err) { LOG_INF("Security changed: %s level %u", log_strdup(addr), level); } else { LOG_WRN("Security failed: %s level %u err %d", log_strdup(addr), level, err); } gatt_discover(conn); } BT_CONN_CB_DEFINE(conn_callbacks) = { .connected = connected, .disconnected = disconnected, .security_changed = security_changed }; static void scan_filter_match(struct bt_scan_device_info *device_info, struct bt_scan_filter_match *filter_match, bool connectable) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(device_info->recv_info->addr, addr, sizeof(addr)); LOG_INF("Filters matched. Address: %s connectable: %d", log_strdup(addr), connectable); } static void scan_connecting_error(struct bt_scan_device_info *device_info) { LOG_WRN("Connecting failed"); } static void scan_connecting(struct bt_scan_device_info *device_info, struct bt_conn *conn) { default_conn = bt_conn_ref(conn); } static int nus_client_init(void) { int err; struct bt_nus_client_init_param init = { .cb = { .received = ble_data_received, .sent = ble_data_sent, } }; err = bt_nus_client_init(&nus_client, &init); if (err) { LOG_ERR("NUS Client initialization failed (err %d)", err); return err; } LOG_INF("NUS Client module initialized"); return err; } BT_SCAN_CB_INIT(scan_cb, scan_filter_match, NULL, scan_connecting_error, scan_connecting); static int scan_init(void) { int err; struct bt_scan_init_param scan_init = { .connect_if_match = 1, }; bt_scan_init(&scan_init); bt_scan_cb_register(&scan_cb); err = bt_scan_filter_add(BT_SCAN_FILTER_TYPE_UUID, BT_UUID_NUS_SERVICE); if (err) { LOG_ERR("Scanning filters cannot be set (err %d)", err); return err; } err = bt_scan_filter_enable(BT_SCAN_UUID_FILTER, false); if (err) { LOG_ERR("Filters cannot be turned on (err %d)", err); return err; } LOG_INF("Scan module initialized"); return err; } static void auth_cancel(struct bt_conn *conn) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_INF("Pairing cancelled: %s", log_strdup(addr)); } static void pairing_complete(struct bt_conn *conn, bool bonded) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_INF("Pairing completed: %s, bonded: %d", log_strdup(addr), bonded); } static void pairing_failed(struct bt_conn *conn, enum bt_security_err reason) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_WRN("Pairing failed conn: %s, reason %d", log_strdup(addr), reason); } static struct bt_conn_auth_cb conn_auth_callbacks = { .cancel = auth_cancel, .pairing_complete = pairing_complete, .pairing_failed = pairing_failed }; static void configure_gpio(void) { int err; err = dk_leds_init(); if (err) { LOG_ERR("Cannot init LEDs (err: %d)", err); } } void main(void) { int err = 0; err = bt_conn_auth_cb_register(&conn_auth_callbacks); if (err) { LOG_ERR("Failed to register authorization callbacks."); return; } err = bt_enable(NULL); if (err) { LOG_ERR("Bluetooth init failed (err %d)", err); return; } LOG_INF("Bluetooth initialized"); k_sem_give(&ble_init_ok); if (IS_ENABLED(CONFIG_SETTINGS)) { settings_load(); } int (*module_init[])(void) = {uart_init, scan_init, nus_client_init}; for (size_t i = 0; i < ARRAY_SIZE(module_init); i++) { err = (*module_init[i])(); if (err) { return; } } printk("Starting Bluetooth Central UART example\n"); err = bt_scan_start(BT_SCAN_TYPE_SCAN_ACTIVE); if (err) { LOG_ERR("Scanning failed to start (err %d)", err); return; } LOG_INF("Scanning successfully started"); for (;;) { } } void ble_write_thread(void) { int err; // Don't go any further until BLE is initialized k_sem_take(&ble_init_ok, K_FOREVER); for (;;) { // Wait indefinitely for data to be sent over bluetooth struct uart_data_t *buf = k_fifo_get(&fifo_uart_rx_data, K_FOREVER); err = bt_nus_client_send(&nus_client, buf->data, buf->len); if (err) { LOG_WRN("Failed to send data over BLE connection" "(err %d)", err); } err = k_sem_take(&nus_write_sem, NUS_WRITE_TIMEOUT); if (err) { LOG_WRN("NUS send timeout"); } k_free(buf); } } K_THREAD_DEFINE(ble_write_thread_id, STACKSIZE, ble_write_thread, NULL, NULL, NULL, PRIORITY, 0, 0);
but when I set in CMakeLists