comment or uncomment a code in while loop cause problem?

hi i use pca10056 board with segger embedded studio

i currently facing a bizzarre problem with my project

i use adc function and nus service and low frequency clock

everything went fine with my project until i tried to comment code 

       if(bsp_board_button_state_get(BSP_BOARD_BUTTON_2)==1 )
         {
            
         }
         

literally this code is the only issue for my project

that code is in main while loop

uncomment that code line has no problem,

comment that code makes my project don't work

which means i have to include that code line in while loop

i could kept developing my code since just uncommnet that code doesn't make any error

but i just wonder what does  commenting that code has to do with error??

i know my question lacks a lot of information but i just wonder if this kind of problem has occcured to someone else.

below is my main code thank you

/**
 * Copyright (c) 2014 - 2021, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */


#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "bsp.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_delay.h"
#include "nrf_temp.h"
#include "app_button.h"


#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
//start of saadc
#include "nrf_drv_saadc.h"
#include "nrf_drv_ppi.h"
#include "nrf_drv_timer.h"

#include "nrf_drv_clock.h"
#include "nrf_drv_rtc.h"

#include "nrf_gpio.h"
uint16_t USER_uart_tx(char *_str);

//end of gpt                             
       /**< A tag identifying the SoftDevice BLE configuration. */


#define APP_BLE_CONN_CFG_TAG            1  
#define DEVICE_NAME                     "Nordic_UART"                               /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(30, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(30, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                      /**< UART TX buffer size.  original 256*/
#define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */

#define APP_BLE_CONN_CFG_TAG 1
BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3 ;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};
static uint8_t m_data[] = "Button Pressed\r\n";
static uint8_t m_data_1[] = "ADC started\r\n";
static uint8_t m_data_2[] = "ADC stopped\r\n";
// saadc start
#define SAMPLES_IN_BUFFER 8
#define HW_TIMEOUT 10000
float ms=0;
uint8_t adcflag=0;
static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(1);
static nrf_saadc_value_t     m_buffer_pool[2][SAMPLES_IN_BUFFER];
static nrf_ppi_channel_t     m_ppi_channel;
static uint32_t              m_adc_evt_counter;
#define SAADC_OVERSAMPLE NRF_SAADC_OVERSAMPLE_16X 
static volatile bool         saadc_aborted = false;

void saadc_sampling_event_enable(void);
void saadc_sampling_event_disable(void);
void calibrate_saadc(void);
int ADC_CH0[2]={20000};
int ADC_CH1[2]={20000};
uint16_t adc_index=0;
uint16_t rtc_index=0;
int i=0;
//saadc end 
/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for initializing the timer module.
 */
static void timers_init(void)
{
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_evt       Nordic UART Service event.
 */
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_evt_t * p_evt)
{
    uint8_t i;
    //uint16_t leng;
    //uint8_t str[]="xxx\r\n";
    if (p_evt->type == BLE_NUS_EVT_RX_DATA) //is event rx data?
    {
        uint32_t err_code;
      
        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
        {
            do
            {
                err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); //output string to interface function
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
            } while (err_code == NRF_ERROR_BUSY);
        }
        if(p_evt->params.rx_data.p_data[0] == 's')
        {
           
          adcflag=0;
        }
        else if( p_evt->params.rx_data.p_data[0] == 'g')
        {
      
          adcflag=1;
          for( i=0 ; i<2 ; i++ )
          {
             ADC_CH0[i]=20000;
             ADC_CH1[i]=20000;
          }
          //leng=USER_uart_tx(str);
          //err_code=ble_nus_data_send(&m_nus,str, &leng, m_conn_handle);
          //APP_ERROR_CHECK(err_code);
          
        }
        if(p_evt->params.rx_data.p_data[0] == '3')
        {
           
           bsp_board_led_on(BSP_BOARD_LED_3);
        }
        if(p_evt->params.rx_data.p_data[0] == '4')
        {
           
           bsp_board_led_off(BSP_BOARD_LED_3);
        }
        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
        {
            while (app_uart_put('\n') == NRF_ERROR_BUSY);
        }
    }

}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t           err_code;
    ble_nus_init_t     nus_init;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize NUS.
    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;
    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
            err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;
      
        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;
        //case BSP_EVENT_KEY_2:
        //            err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
        //            APP_ERROR_CHECK(err_code);
        //            saadc_sampling_event_enable();
        //            saadc_aborted = false;
        //            break;						
                    
        //case BSP_EVENT_KEY_3:
        //            saadc_sampling_event_disable();
        //            saadc_aborted = true;
        //            nrf_drv_saadc_abort();
        //            break;


        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;

            if ((data_array[index - 1] == '\n') ||
                (data_array[index - 1] == '\r') ||
                (index >= m_ble_nus_max_data_len))
            {
                if (index > 1)
                {
                    NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                    NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                    do
                    {
                        uint16_t length = (uint16_t)index;
                        err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); //send data
                        if ((err_code != NRF_ERROR_INVALID_STATE) &&
                            (err_code != NRF_ERROR_RESOURCES) &&
                            (err_code != NRF_ERROR_NOT_FOUND))
                        {
                            APP_ERROR_CHECK(err_code);
                        }
                    } while (err_code == NRF_ERROR_RESOURCES);
                }

                index = 0;
            }
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
}
/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UART_BAUDRATE_115200
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(void)
{
    uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
}


/**@brief Application main function.
 */

 //saadc function start
 
 void timer_handler(nrf_timer_event_t event_type, void * p_context)
{

}


void saadc_sampling_event_init(void)
{
    ret_code_t err_code;

    err_code = nrf_drv_ppi_init();
    APP_ERROR_CHECK(err_code);

    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
    err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
 //   err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
    APP_ERROR_CHECK(err_code);

    /* setup m_timer for compare event every 400ms */
    uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer,2);  //for 2 channel 50 is fastest limit  //10 possible for 1 channel
    nrf_drv_timer_extended_compare(&m_timer,
                                   NRF_TIMER_CC_CHANNEL0,
                                   ticks,
                                   NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK,
                                   false);
    nrf_drv_timer_enable(&m_timer);

    uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                NRF_TIMER_CC_CHANNEL0);
    uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();

    /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
    err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
                                          timer_compare_event_addr,
                                          saadc_sample_task_addr);
    APP_ERROR_CHECK(err_code);
}



void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
{
    //float val;
    //if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
    //{
    //    ret_code_t err_code;

    //    err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
    //    APP_ERROR_CHECK(err_code);

    //    int i;
    //    NRF_LOG_INFO("ADC event number: %d", (int)m_adc_evt_counter);

    //    for (i = 0; i < SAMPLES_IN_BUFFER; i++)
    //    {
    //        NRF_LOG_INFO("sample value %d", p_event->data.done.p_buffer[i]);
    //        val= p_event->data.done.p_buffer[i]*3.6/4096;
    //        NRF_LOG_INFO("voltage read:"NRF_LOG_FLOAT_MARKER"\r\n",NRF_LOG_FLOAT(val));
    //    }
    //    m_adc_evt_counter++;
    //}
    if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
    {
        ret_code_t err_code;
        uint16_t adc_value;
        uint8_t value[SAMPLES_IN_BUFFER*2];
        uint16_t bytes_to_send;
        float adc1,adc2,adc3,adc4;
        
        // set buffers
 //       err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
 //       APP_ERROR_CHECK(err_code);

        if(!saadc_aborted)
        {
                err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
                APP_ERROR_CHECK(err_code);
        }
						
        // print samples on hardware UART and parse data for BLE transmission
     //   NRF_LOG_INFO("ADC event number: %d\r\n",(int)m_adc_evt_counter);
        for (int i = 0; i < SAMPLES_IN_BUFFER; i++)
        {
           //NRF_LOG_INFO("event number %d\r\n", p_event->data.done.p_buffer[i],ss,ms);

            adc_value = p_event->data.done.p_buffer[i];
            value[i*2] = adc_value;
            value[(i*2)+1] = adc_value >> 8;
        }

        // Send data over BLE via NUS service. Create string from samples and send string with correct length.
        uint8_t nus_string[20];
        //bytes_to_send = sprintf(nus_string, 
        //                        "CH0:%d   CH1:%d  CH2:%d    CH3:%d\r\n",
        //                        p_event->data.done.p_buffer[0],
        //                        p_event->data.done.p_buffer[1],
        //                        p_event->data.done.p_buffer[2],
        //                        p_event->data.done.p_buffer[3]);
        
        //err_code = ble_nus_data_send(&m_nus, nus_string, &bytes_to_send, m_conn_handle);
        //if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_NOT_FOUND))
        //{
        //    APP_ERROR_CHECK(err_code);
        //}
  
        m_adc_evt_counter++;
        //adc1= p_event->data.done.p_buffer[0]*3.6/4096;
        //adc2= p_event->data.done.p_buffer[1]*3.6/4096;
        //adc3= p_event->data.done.p_buffer[2]*3.6/4096;
        //adc4= p_event->data.done.p_buffer[3]*3.6/4096;

  //      index_0=index_0*SAMPLES_IN_BUFFER;


        //bytes_to_send = sprintf(nus_string,"%d %d %.4f\r\n" ,p_event->data.done.p_buffer[0],p_event->data.done.p_buffer[1],ms);
        //err_code = ble_nus_data_send(&m_nus, nus_string, &bytes_to_send, m_conn_handle);     
        //if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_NOT_FOUND))
        //{
        //    APP_ERROR_CHECK(err_code);
        //}
        ADC_CH0[adc_index]=p_event->data.done.p_buffer[0];
        ADC_CH1[adc_index]=p_event->data.done.p_buffer[1];
        adc_index+=1;
        if(adc_index>1)
        {
           adc_index=0;
        }
        i+=1;

    }

}


void saadc_init(void)
{
    //ret_code_t err_code;
    //nrf_saadc_channel_config_t channel_config =
    //  NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);

    //err_code = nrf_drv_saadc_init(NULL, saadc_callback);
    //APP_ERROR_CHECK(err_code);

    //err_code = nrf_drv_saadc_channel_init(0, &channel_config);
    //APP_ERROR_CHECK(err_code);
    //err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0], SAMPLES_IN_BUFFER);
    //APP_ERROR_CHECK(err_code);

    //err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1], SAMPLES_IN_BUFFER);
    //APP_ERROR_CHECK(err_code);

    ret_code_t err_code;
    nrf_drv_saadc_config_t saadc_config;
    nrf_saadc_channel_config_t channel_config0;
    nrf_saadc_channel_config_t channel_config1;
    nrf_saadc_channel_config_t channel_config2;
    nrf_saadc_channel_config_t channel_config3;
	
    //Configure SAADC
    saadc_config.resolution = NRF_SAADC_RESOLUTION_14BIT;                                 //Set SAADC resolution to 12-bit. This will make the SAADC output values from 0 (when input voltage is 0V) to 2^12=2048 (when input voltage is 3.6V for channel gain setting of 1/6).
    saadc_config.oversample = SAADC_OVERSAMPLE;                                           //Set oversample to 4x. This will make the SAADC output a single averaged value when the SAMPLE task is triggered 4 times.
    saadc_config.interrupt_priority = APP_IRQ_PRIORITY_LOW;                               //Set SAADC interrupt to low priority.
	
    //Initialize SAADC
    err_code = nrf_drv_saadc_init(&saadc_config, saadc_callback);                         //Initialize the SAADC with configuration and callback function. The application must then implement the saadc_callback function, which will be called when SAADC interrupt is triggered
    APP_ERROR_CHECK(err_code);
  //  calibrate_saadc();		
    //Configure SAADC channel
    channel_config0.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config0.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config0.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config0.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config0.pin_p = NRF_SAADC_INPUT_AIN0;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config0.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config0.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config0.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config0.burst  = NRF_SAADC_BURST_ENABLED;


    channel_config1.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config1.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config1.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config1.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config1.pin_p = NRF_SAADC_INPUT_AIN1;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config1.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config1.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config1.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config1.burst  = NRF_SAADC_BURST_ENABLED;
 
    
    channel_config2.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config2.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config2.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config2.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config2.pin_p = NRF_SAADC_INPUT_AIN2;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config2.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config2.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config2.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config2.burst = NRF_SAADC_BURST_ENABLED;
   
   
    
    channel_config3.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config3.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config3.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config3.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config3.pin_p = NRF_SAADC_INPUT_AIN3;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config3.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config3.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config3.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config3.burst        = NRF_SAADC_BURST_ENABLED;


    //Initialize SAADC channel
    err_code = nrf_drv_saadc_channel_init(0, &channel_config0);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    err_code = nrf_drv_saadc_channel_init(1, &channel_config1);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    err_code = nrf_drv_saadc_channel_init(2, &channel_config2);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    err_code = nrf_drv_saadc_channel_init(3, &channel_config3);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    //nrfx_saadc_channel_uninit(2);
    //nrfx_saadc_channel_uninit(3);
    err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);    //Set SAADC buffer 1. The SAADC will start to write to this buffer
    APP_ERROR_CHECK(err_code);
    
    err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAMPLES_IN_BUFFER);    //Set SAADC buffer 2. The SAADC will write to this buffer when buffer 1 is full. This will give the applicaiton time to process data in buffer 1.
    APP_ERROR_CHECK(err_code);

}
void saadc_sampling_event_enable(void)
{
    ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
    APP_ERROR_CHECK(err_code);
}
void saadc_sampling_event_disable(void)
{
    ret_code_t err_code = nrf_drv_ppi_channel_disable(m_ppi_channel);
    APP_ERROR_CHECK(err_code);
}

void calibrate_saadc(void)
{
    nrfx_err_t nrfx_err_code = NRFX_SUCCESS;

    // Stop ADC
    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    NRFX_IRQ_DISABLE(SAADC_IRQn);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);

    // Wait for ADC being stopped.
    bool result;
    NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED), HW_TIMEOUT, 0, result);
    NRFX_ASSERT(result);

    // Start calibration
    NRFX_IRQ_ENABLE(SAADC_IRQn);
    nrfx_err_code = nrfx_saadc_calibrate_offset();
    APP_ERROR_CHECK(nrfx_err_code);
    while(nrfx_saadc_is_busy()){};
    
    // Stop ADC
    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    NRFX_IRQ_DISABLE(SAADC_IRQn);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);

    // Wait for ADC being stopped. 
    NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED), HW_TIMEOUT, 0, result);
    NRFX_ASSERT(result);
    
    // Enable IRQ
    NRFX_IRQ_ENABLE(SAADC_IRQn);

}

 //saadc function end
void conn_evt_len_ext_set(void)
{
    ret_code_t err_code;
    ble_opt_t  opt;

    memset(&opt, 0x00, sizeof(opt));
    opt.common_opt.conn_evt_ext.enable = 1;

    err_code = sd_ble_opt_set(BLE_COMMON_OPT_CONN_EVT_EXT, &opt);
    APP_ERROR_CHECK(err_code);
}

//rtc
const nrfx_rtc_t rtc=NRFX_RTC_INSTANCE(2); //rtc 2 handle
static void lfclk_config(void)
{
    nrf_drv_clock_lfclk_request(NULL);

}
static void rtc_handler( nrfx_rtc_int_type_t int_type )
{
    uint8_t str[30] ;
    float volt_0,volt_1;
    uint16_t length_rtc = 0;
    if(int_type == NRFX_RTC_INT_TICK )
    {
      //  time+=1;  //increase time value every 1ms
        ms+=0.000488;
        //ss=time/1000;
        //sprintf(str,"%d:%d\r\n" , ss,ms);
        //length=USER_uart_tx(str);
        //ble_nus_data_send(&m_nus, str, &length, m_conn_handle);
        if( saadc_aborted==false )
        {
            if( rtc_index == adc_index )
            {
              
            }
            else if( rtc_index!=adc_index )
            {
              if( ADC_CH0[adc_index] == 20000 || ADC_CH1[adc_index] == 20000 )
              {

              }
              else 
              {
                sprintf(str,"%d %d %.4f\r\n", ADC_CH0[adc_index], ADC_CH1[adc_index],ms);
                length_rtc=USER_uart_tx(str);
                ble_nus_data_send(&m_nus,str, &length_rtc, m_conn_handle);
                rtc_index = adc_index;
              }

            }
        }
        else if( saadc_aborted==true )
        {
            
        }
        
 


    }
}



static void rtc_config(void)
{
    uint32_t err_code;
    nrfx_rtc_config_t rtc_config = NRFX_RTC_DEFAULT_CONFIG;
    rtc_config.prescaler =15 ; //tick=32768/(15+2) == 2048hz
    err_code = nrfx_rtc_init(&rtc, &rtc_config , rtc_handler );
    APP_ERROR_CHECK(err_code);
    nrfx_rtc_tick_enable(&rtc, true);
    nrfx_rtc_enable(&rtc);
  
}
// rtc end 
int main(void)
{
    int flag=0;
    int init_flag=1;
    char temperature[50];
    int32_t temp;
    bool erase_bonds;
    uint32_t     err_code;
    uint16_t length =0;
    uint8_t i;
    // Initialize.
    uart_init();
    log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);
    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    conn_evt_len_ext_set();
    advertising_init();
    conn_params_init();
    lfclk_config();
    rtc_config();
    // Start execution.
    NRF_LOG_INFO("Debug logging for UART over RTT started.");
    advertising_start();
    APP_ERROR_CHECK(NRF_LOG_INIT(NULL));

    NRF_LOG_INFO("SAADC HAL simple example started.");
    // Enter main loop.
    while(1)
    {
        if(bsp_board_button_state_get(BSP_BOARD_BUTTON_2)==1 )
         {
            
         }
         if( adcflag==1 && flag==0)
         {
              if( init_flag==1 )
              {
                
                  saadc_init();
                  saadc_sampling_event_init();
                  saadc_sampling_event_enable();
                  init_flag=0;
                  flag=1;
                  ms=0;
      //            bsp_board_led_on(BSP_BOARD_LED_3);


              }
              else if(init_flag==0)
              {
                  ms=0;
                  err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
                  nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAMPLES_IN_BUFFER);
                  APP_ERROR_CHECK(err_code);
                  saadc_sampling_event_enable();
                  saadc_aborted = false;
                  flag=1;
    

                  
              }
                  
        }
        else if(adcflag==0  && flag==1)
        {
              saadc_sampling_event_disable();
              saadc_aborted = true;
              nrf_drv_saadc_abort();
              flag=0;
     //         bsp_board_led_off(BSP_BOARD_LED_3);
          
              
        }    
        idle_state_handle();

  //      if(( bsp_board_button_state_get(BSP_BOARD_BUTTON_2)==1) &&flag==0)
  //      {
  //            if( init_flag==1 )
  //            {
                
  //                saadc_init();
  //                saadc_sampling_event_init();
  //                saadc_sampling_event_enable();
  //                init_flag=0;
  //                flag=1;
  //                ms=0;
  //                bsp_board_led_on(BSP_BOARD_LED_3);
  //                adcflag=1;


  //            }
  //            else if(init_flag==0)
  //            {
  //                ms=0;
  //                err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
  //                APP_ERROR_CHECK(err_code);
  //                saadc_sampling_event_enable();
  //                saadc_aborted = false;
  //                flag=1;
  //                for( i=0 ; i<2 ; i++ )
  //                {
  //                   ADC_CH0[i]=20000;
  //                   ADC_CH1[i]=20000;
  //                }
  //                 bsp_board_led_on(BSP_BOARD_LED_3);
  //                 adcflag=1;

  ////                length=USER_uart_tx(m_data_1);
  //                // err_code = ble_nus_data_send(&m_nus, m_data_1, &length, m_conn_handle); //send data
  //                //if ((err_code != NRF_ERROR_INVALID_STATE) &&
  //                //    (err_code != NRF_ERROR_RESOURCES) &&
  //                //    (err_code != NRF_ERROR_NOT_FOUND))
  //                //{
  //                //    APP_ERROR_CHECK(err_code);
  //                //}


                  
  //            }
                  
  //      }
 //       if((bsp_board_button_state_get(BSP_BOARD_BUTTON_3)==1 ) && flag==1)
 //       {
 //             //saadc_sampling_event_disable();
 //             //saadc_aborted = true;
 //             //nrf_drv_saadc_abort();
 //             //flag=0;
 //             //adcflag=0;
 //             //bsp_board_led_off(BSP_BOARD_LED_3);
 ////             length=USER_uart_tx(m_data_2);
 //             //err_code = ble_nus_data_send(&m_nus, m_data_2, &length, m_conn_handle); //send data
 //             //if ((err_code != NRF_ERROR_INVALID_STATE) &&
 //             //    (err_code != NRF_ERROR_RESOURCES) &&
 //             //    (err_code != NRF_ERROR_NOT_FOUND))
 //             //{
 //             //    APP_ERROR_CHECK(err_code);
 //         //    }

              
              
 //       }
 

  
        //flag=bsp_board_button_state_get(BSP_BOARD_BUTTON_1);
     //   temp start
        //sd_temp_get(&temp);
        //temp=temp/4;
        //sprintf(temperature, "Temperature is %d\r\n", temp);
        //length=USER_uart_tx(temperature);
        //ble_nus_data_send(&m_nus, temperature, &length, m_conn_handle);
        //nrf_delay_ms(500);
    //    NRF_LOG_FLUSH();       
        ////temp end

    }
}
uint16_t USER_uart_tx(char *_str)
{
	uint16_t i;
	for(i = 0 ; i < 1000  ; i++   )
	{
		if(_str[i] == 0)
		{
			break;
		}
	}
        return i;
}

/**
 * @}
 */
/**
 * Copyright (c) 2014 - 2021, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */


#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "bsp.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_delay.h"
#include "nrf_temp.h"
#include "app_button.h"


#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
//start of saadc
#include "nrf_drv_saadc.h"
#include "nrf_drv_ppi.h"
#include "nrf_drv_timer.h"

#include "nrf_drv_clock.h"
#include "nrf_drv_rtc.h"

#include "nrf_gpio.h"
uint16_t USER_uart_tx(char *_str);

//end of gpt                             
       /**< A tag identifying the SoftDevice BLE configuration. */


#define APP_BLE_CONN_CFG_TAG            1  
#define DEVICE_NAME                     "Nordic_UART"                               /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(30, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(30, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                      /**< UART TX buffer size.  original 256*/
#define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */

#define APP_BLE_CONN_CFG_TAG 1
BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3 ;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};
static uint8_t m_data[] = "Button Pressed\r\n";
static uint8_t m_data_1[] = "ADC started\r\n";
static uint8_t m_data_2[] = "ADC stopped\r\n";
// saadc start
#define SAMPLES_IN_BUFFER 8
#define HW_TIMEOUT 10000
float ms=0;
uint8_t adcflag=0;
static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(1);
static nrf_saadc_value_t     m_buffer_pool[2][SAMPLES_IN_BUFFER];
static nrf_ppi_channel_t     m_ppi_channel;
static uint32_t              m_adc_evt_counter;
#define SAADC_OVERSAMPLE NRF_SAADC_OVERSAMPLE_16X 
static volatile bool         saadc_aborted = false;

void saadc_sampling_event_enable(void);
void saadc_sampling_event_disable(void);
void calibrate_saadc(void);
int ADC_CH0[2]={20000};
int ADC_CH1[2]={20000};
uint16_t adc_index=0;
uint16_t rtc_index=0;
int i=0;
//saadc end 
/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for initializing the timer module.
 */
static void timers_init(void)
{
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_evt       Nordic UART Service event.
 */
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_evt_t * p_evt)
{
    uint8_t i;
    //uint16_t leng;
    //uint8_t str[]="xxx\r\n";
    if (p_evt->type == BLE_NUS_EVT_RX_DATA) //is event rx data?
    {
        uint32_t err_code;
      
        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
        {
            do
            {
                err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); //output string to interface function
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
            } while (err_code == NRF_ERROR_BUSY);
        }
        if(p_evt->params.rx_data.p_data[0] == 's')
        {
           
          adcflag=0;
        }
        else if( p_evt->params.rx_data.p_data[0] == 'g')
        {
      
          adcflag=1;
          for( i=0 ; i<2 ; i++ )
          {
             ADC_CH0[i]=20000;
             ADC_CH1[i]=20000;
          }
          //leng=USER_uart_tx(str);
          //err_code=ble_nus_data_send(&m_nus,str, &leng, m_conn_handle);
          //APP_ERROR_CHECK(err_code);
          
        }
        if(p_evt->params.rx_data.p_data[0] == '3')
        {
           
           bsp_board_led_on(BSP_BOARD_LED_3);
        }
        if(p_evt->params.rx_data.p_data[0] == '4')
        {
           
           bsp_board_led_off(BSP_BOARD_LED_3);
        }
        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
        {
            while (app_uart_put('\n') == NRF_ERROR_BUSY);
        }
    }

}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t           err_code;
    ble_nus_init_t     nus_init;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize NUS.
    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;
    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
            err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;
      
        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;
        //case BSP_EVENT_KEY_2:
        //            err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
        //            APP_ERROR_CHECK(err_code);
        //            saadc_sampling_event_enable();
        //            saadc_aborted = false;
        //            break;						
                    
        //case BSP_EVENT_KEY_3:
        //            saadc_sampling_event_disable();
        //            saadc_aborted = true;
        //            nrf_drv_saadc_abort();
        //            break;


        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;

            if ((data_array[index - 1] == '\n') ||
                (data_array[index - 1] == '\r') ||
                (index >= m_ble_nus_max_data_len))
            {
                if (index > 1)
                {
                    NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                    NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                    do
                    {
                        uint16_t length = (uint16_t)index;
                        err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); //send data
                        if ((err_code != NRF_ERROR_INVALID_STATE) &&
                            (err_code != NRF_ERROR_RESOURCES) &&
                            (err_code != NRF_ERROR_NOT_FOUND))
                        {
                            APP_ERROR_CHECK(err_code);
                        }
                    } while (err_code == NRF_ERROR_RESOURCES);
                }

                index = 0;
            }
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
}
/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UART_BAUDRATE_115200
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(void)
{
    uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
}


/**@brief Application main function.
 */

 //saadc function start
 
 void timer_handler(nrf_timer_event_t event_type, void * p_context)
{

}


void saadc_sampling_event_init(void)
{
    ret_code_t err_code;

    err_code = nrf_drv_ppi_init();
    APP_ERROR_CHECK(err_code);

    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
    err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
 //   err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
    APP_ERROR_CHECK(err_code);

    /* setup m_timer for compare event every 400ms */
    uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer,2);  //for 2 channel 50 is fastest limit  //10 possible for 1 channel
    nrf_drv_timer_extended_compare(&m_timer,
                                   NRF_TIMER_CC_CHANNEL0,
                                   ticks,
                                   NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK,
                                   false);
    nrf_drv_timer_enable(&m_timer);

    uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                NRF_TIMER_CC_CHANNEL0);
    uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();

    /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
    err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
                                          timer_compare_event_addr,
                                          saadc_sample_task_addr);
    APP_ERROR_CHECK(err_code);
}



void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
{
    //float val;
    //if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
    //{
    //    ret_code_t err_code;

    //    err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
    //    APP_ERROR_CHECK(err_code);

    //    int i;
    //    NRF_LOG_INFO("ADC event number: %d", (int)m_adc_evt_counter);

    //    for (i = 0; i < SAMPLES_IN_BUFFER; i++)
    //    {
    //        NRF_LOG_INFO("sample value %d", p_event->data.done.p_buffer[i]);
    //        val= p_event->data.done.p_buffer[i]*3.6/4096;
    //        NRF_LOG_INFO("voltage read:"NRF_LOG_FLOAT_MARKER"\r\n",NRF_LOG_FLOAT(val));
    //    }
    //    m_adc_evt_counter++;
    //}
    if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
    {
        ret_code_t err_code;
        uint16_t adc_value;
        uint8_t value[SAMPLES_IN_BUFFER*2];
        uint16_t bytes_to_send;
        float adc1,adc2,adc3,adc4;
        
        // set buffers
 //       err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
 //       APP_ERROR_CHECK(err_code);

        if(!saadc_aborted)
        {
                err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
                APP_ERROR_CHECK(err_code);
        }
						
        // print samples on hardware UART and parse data for BLE transmission
     //   NRF_LOG_INFO("ADC event number: %d\r\n",(int)m_adc_evt_counter);
        for (int i = 0; i < SAMPLES_IN_BUFFER; i++)
        {
           //NRF_LOG_INFO("event number %d\r\n", p_event->data.done.p_buffer[i],ss,ms);

            adc_value = p_event->data.done.p_buffer[i];
            value[i*2] = adc_value;
            value[(i*2)+1] = adc_value >> 8;
        }

        // Send data over BLE via NUS service. Create string from samples and send string with correct length.
        uint8_t nus_string[20];
        //bytes_to_send = sprintf(nus_string, 
        //                        "CH0:%d   CH1:%d  CH2:%d    CH3:%d\r\n",
        //                        p_event->data.done.p_buffer[0],
        //                        p_event->data.done.p_buffer[1],
        //                        p_event->data.done.p_buffer[2],
        //                        p_event->data.done.p_buffer[3]);
        
        //err_code = ble_nus_data_send(&m_nus, nus_string, &bytes_to_send, m_conn_handle);
        //if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_NOT_FOUND))
        //{
        //    APP_ERROR_CHECK(err_code);
        //}
  
        m_adc_evt_counter++;
        //adc1= p_event->data.done.p_buffer[0]*3.6/4096;
        //adc2= p_event->data.done.p_buffer[1]*3.6/4096;
        //adc3= p_event->data.done.p_buffer[2]*3.6/4096;
        //adc4= p_event->data.done.p_buffer[3]*3.6/4096;

  //      index_0=index_0*SAMPLES_IN_BUFFER;


        //bytes_to_send = sprintf(nus_string,"%d %d %.4f\r\n" ,p_event->data.done.p_buffer[0],p_event->data.done.p_buffer[1],ms);
        //err_code = ble_nus_data_send(&m_nus, nus_string, &bytes_to_send, m_conn_handle);     
        //if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_NOT_FOUND))
        //{
        //    APP_ERROR_CHECK(err_code);
        //}
        ADC_CH0[adc_index]=p_event->data.done.p_buffer[0];
        ADC_CH1[adc_index]=p_event->data.done.p_buffer[1];
        adc_index+=1;
        if(adc_index>1)
        {
           adc_index=0;
        }
        i+=1;

    }

}


void saadc_init(void)
{
    //ret_code_t err_code;
    //nrf_saadc_channel_config_t channel_config =
    //  NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);

    //err_code = nrf_drv_saadc_init(NULL, saadc_callback);
    //APP_ERROR_CHECK(err_code);

    //err_code = nrf_drv_saadc_channel_init(0, &channel_config);
    //APP_ERROR_CHECK(err_code);
    //err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0], SAMPLES_IN_BUFFER);
    //APP_ERROR_CHECK(err_code);

    //err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1], SAMPLES_IN_BUFFER);
    //APP_ERROR_CHECK(err_code);

    ret_code_t err_code;
    nrf_drv_saadc_config_t saadc_config;
    nrf_saadc_channel_config_t channel_config0;
    nrf_saadc_channel_config_t channel_config1;
    nrf_saadc_channel_config_t channel_config2;
    nrf_saadc_channel_config_t channel_config3;
	
    //Configure SAADC
    saadc_config.resolution = NRF_SAADC_RESOLUTION_14BIT;                                 //Set SAADC resolution to 12-bit. This will make the SAADC output values from 0 (when input voltage is 0V) to 2^12=2048 (when input voltage is 3.6V for channel gain setting of 1/6).
    saadc_config.oversample = SAADC_OVERSAMPLE;                                           //Set oversample to 4x. This will make the SAADC output a single averaged value when the SAMPLE task is triggered 4 times.
    saadc_config.interrupt_priority = APP_IRQ_PRIORITY_LOW;                               //Set SAADC interrupt to low priority.
	
    //Initialize SAADC
    err_code = nrf_drv_saadc_init(&saadc_config, saadc_callback);                         //Initialize the SAADC with configuration and callback function. The application must then implement the saadc_callback function, which will be called when SAADC interrupt is triggered
    APP_ERROR_CHECK(err_code);
  //  calibrate_saadc();		
    //Configure SAADC channel
    channel_config0.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config0.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config0.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config0.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config0.pin_p = NRF_SAADC_INPUT_AIN0;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config0.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config0.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config0.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config0.burst  = NRF_SAADC_BURST_ENABLED;


    channel_config1.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config1.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config1.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config1.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config1.pin_p = NRF_SAADC_INPUT_AIN1;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config1.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config1.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config1.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config1.burst  = NRF_SAADC_BURST_ENABLED;
 
    
    channel_config2.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config2.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config2.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config2.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config2.pin_p = NRF_SAADC_INPUT_AIN2;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config2.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config2.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config2.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config2.burst = NRF_SAADC_BURST_ENABLED;
   
   
    
    channel_config3.reference = NRF_SAADC_REFERENCE_INTERNAL;                              //Set internal reference of fixed 0.6 volts
    channel_config3.gain = NRF_SAADC_GAIN1_6;                                              //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
    channel_config3.acq_time = NRF_SAADC_ACQTIME_3US;                                     //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS. 
    channel_config3.mode = NRF_SAADC_MODE_SINGLE_ENDED;                                    //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
    channel_config3.pin_p = NRF_SAADC_INPUT_AIN3;                                          //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
    channel_config3.pin_n = NRF_SAADC_INPUT_DISABLED;                                      //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
    channel_config3.resistor_p = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pullup resistor on the input pin
    channel_config3.resistor_n = NRF_SAADC_RESISTOR_DISABLED;                              //Disable pulldown resistor on the input pin
    channel_config3.burst        = NRF_SAADC_BURST_ENABLED;


    //Initialize SAADC channel
    err_code = nrf_drv_saadc_channel_init(0, &channel_config0);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    err_code = nrf_drv_saadc_channel_init(1, &channel_config1);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    err_code = nrf_drv_saadc_channel_init(2, &channel_config2);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    err_code = nrf_drv_saadc_channel_init(3, &channel_config3);                            //Initialize SAADC channel 0 with the channel configuration
    APP_ERROR_CHECK(err_code);
    //nrfx_saadc_channel_uninit(2);
    //nrfx_saadc_channel_uninit(3);
    err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);    //Set SAADC buffer 1. The SAADC will start to write to this buffer
    APP_ERROR_CHECK(err_code);
    
    err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAMPLES_IN_BUFFER);    //Set SAADC buffer 2. The SAADC will write to this buffer when buffer 1 is full. This will give the applicaiton time to process data in buffer 1.
    APP_ERROR_CHECK(err_code);

}
void saadc_sampling_event_enable(void)
{
    ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
    APP_ERROR_CHECK(err_code);
}
void saadc_sampling_event_disable(void)
{
    ret_code_t err_code = nrf_drv_ppi_channel_disable(m_ppi_channel);
    APP_ERROR_CHECK(err_code);
}

void calibrate_saadc(void)
{
    nrfx_err_t nrfx_err_code = NRFX_SUCCESS;

    // Stop ADC
    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    NRFX_IRQ_DISABLE(SAADC_IRQn);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);

    // Wait for ADC being stopped.
    bool result;
    NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED), HW_TIMEOUT, 0, result);
    NRFX_ASSERT(result);

    // Start calibration
    NRFX_IRQ_ENABLE(SAADC_IRQn);
    nrfx_err_code = nrfx_saadc_calibrate_offset();
    APP_ERROR_CHECK(nrfx_err_code);
    while(nrfx_saadc_is_busy()){};
    
    // Stop ADC
    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    NRFX_IRQ_DISABLE(SAADC_IRQn);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);

    // Wait for ADC being stopped. 
    NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED), HW_TIMEOUT, 0, result);
    NRFX_ASSERT(result);
    
    // Enable IRQ
    NRFX_IRQ_ENABLE(SAADC_IRQn);

}

 //saadc function end
void conn_evt_len_ext_set(void)
{
    ret_code_t err_code;
    ble_opt_t  opt;

    memset(&opt, 0x00, sizeof(opt));
    opt.common_opt.conn_evt_ext.enable = 1;

    err_code = sd_ble_opt_set(BLE_COMMON_OPT_CONN_EVT_EXT, &opt);
    APP_ERROR_CHECK(err_code);
}

//rtc
const nrfx_rtc_t rtc=NRFX_RTC_INSTANCE(2); //rtc 2 handle
static void lfclk_config(void)
{
    nrf_drv_clock_lfclk_request(NULL);

}
static void rtc_handler( nrfx_rtc_int_type_t int_type )
{
    uint8_t str[30] ;
    float volt_0,volt_1;
    uint16_t length_rtc = 0;
    if(int_type == NRFX_RTC_INT_TICK )
    {
      //  time+=1;  //increase time value every 1ms
        ms+=0.000488;
        //ss=time/1000;
        //sprintf(str,"%d:%d\r\n" , ss,ms);
        //length=USER_uart_tx(str);
        //ble_nus_data_send(&m_nus, str, &length, m_conn_handle);
        if( saadc_aborted==false )
        {
            if( rtc_index == adc_index )
            {
              
            }
            else if( rtc_index!=adc_index )
            {
              if( ADC_CH0[adc_index] == 20000 || ADC_CH1[adc_index] == 20000 )
              {

              }
              else 
              {
                sprintf(str,"%d %d %.4f\r\n", ADC_CH0[adc_index], ADC_CH1[adc_index],ms);
                length_rtc=USER_uart_tx(str);
                ble_nus_data_send(&m_nus,str, &length_rtc, m_conn_handle);
                rtc_index = adc_index;
              }

            }
        }
        else if( saadc_aborted==true )
        {
            
        }
        
 


    }
}



static void rtc_config(void)
{
    uint32_t err_code;
    nrfx_rtc_config_t rtc_config = NRFX_RTC_DEFAULT_CONFIG;
    rtc_config.prescaler =15 ; //tick=32768/(15+2) == 2048hz
    err_code = nrfx_rtc_init(&rtc, &rtc_config , rtc_handler );
    APP_ERROR_CHECK(err_code);
    nrfx_rtc_tick_enable(&rtc, true);
    nrfx_rtc_enable(&rtc);
  
}
// rtc end 
int main(void)
{
    int flag=0;
    int init_flag=1;
    char temperature[50];
    int32_t temp;
    bool erase_bonds;
    uint32_t     err_code;
    uint16_t length =0;
    uint8_t i;
    // Initialize.
    uart_init();
    log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);
    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    conn_evt_len_ext_set();
    advertising_init();
    conn_params_init();
    lfclk_config();
    rtc_config();
    // Start execution.
    NRF_LOG_INFO("Debug logging for UART over RTT started.");
    advertising_start();
    APP_ERROR_CHECK(NRF_LOG_INIT(NULL));

    NRF_LOG_INFO("SAADC HAL simple example started.");
    // Enter main loop.
    while(1)
    {
        if(bsp_board_button_state_get(BSP_BOARD_BUTTON_2)==1 )
         {
            
         }
         if( adcflag==1 && flag==0)
         {
              if( init_flag==1 )
              {
                
                  saadc_init();
                  saadc_sampling_event_init();
                  saadc_sampling_event_enable();
                  init_flag=0;
                  flag=1;
                  ms=0;
      //            bsp_board_led_on(BSP_BOARD_LED_3);


              }
              else if(init_flag==0)
              {
                  ms=0;
                  err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
                  nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAMPLES_IN_BUFFER);
                  APP_ERROR_CHECK(err_code);
                  saadc_sampling_event_enable();
                  saadc_aborted = false;
                  flag=1;
    

                  
              }
                  
        }
        else if(adcflag==0  && flag==1)
        {
              saadc_sampling_event_disable();
              saadc_aborted = true;
              nrf_drv_saadc_abort();
              flag=0;
     //         bsp_board_led_off(BSP_BOARD_LED_3);
          
              
        }    
        idle_state_handle();

  //      if(( bsp_board_button_state_get(BSP_BOARD_BUTTON_2)==1) &&flag==0)
  //      {
  //            if( init_flag==1 )
  //            {
                
  //                saadc_init();
  //                saadc_sampling_event_init();
  //                saadc_sampling_event_enable();
  //                init_flag=0;
  //                flag=1;
  //                ms=0;
  //                bsp_board_led_on(BSP_BOARD_LED_3);
  //                adcflag=1;


  //            }
  //            else if(init_flag==0)
  //            {
  //                ms=0;
  //                err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
  //                APP_ERROR_CHECK(err_code);
  //                saadc_sampling_event_enable();
  //                saadc_aborted = false;
  //                flag=1;
  //                for( i=0 ; i<2 ; i++ )
  //                {
  //                   ADC_CH0[i]=20000;
  //                   ADC_CH1[i]=20000;
  //                }
  //                 bsp_board_led_on(BSP_BOARD_LED_3);
  //                 adcflag=1;

  ////                length=USER_uart_tx(m_data_1);
  //                // err_code = ble_nus_data_send(&m_nus, m_data_1, &length, m_conn_handle); //send data
  //                //if ((err_code != NRF_ERROR_INVALID_STATE) &&
  //                //    (err_code != NRF_ERROR_RESOURCES) &&
  //                //    (err_code != NRF_ERROR_NOT_FOUND))
  //                //{
  //                //    APP_ERROR_CHECK(err_code);
  //                //}


                  
  //            }
                  
  //      }
 //       if((bsp_board_button_state_get(BSP_BOARD_BUTTON_3)==1 ) && flag==1)
 //       {
 //             //saadc_sampling_event_disable();
 //             //saadc_aborted = true;
 //             //nrf_drv_saadc_abort();
 //             //flag=0;
 //             //adcflag=0;
 //             //bsp_board_led_off(BSP_BOARD_LED_3);
 ////             length=USER_uart_tx(m_data_2);
 //             //err_code = ble_nus_data_send(&m_nus, m_data_2, &length, m_conn_handle); //send data
 //             //if ((err_code != NRF_ERROR_INVALID_STATE) &&
 //             //    (err_code != NRF_ERROR_RESOURCES) &&
 //             //    (err_code != NRF_ERROR_NOT_FOUND))
 //             //{
 //             //    APP_ERROR_CHECK(err_code);
 //         //    }

              
              
 //       }
 

  
        //flag=bsp_board_button_state_get(BSP_BOARD_BUTTON_1);
     //   temp start
        //sd_temp_get(&temp);
        //temp=temp/4;
        //sprintf(temperature, "Temperature is %d\r\n", temp);
        //length=USER_uart_tx(temperature);
        //ble_nus_data_send(&m_nus, temperature, &length, m_conn_handle);
        //nrf_delay_ms(500);
    //    NRF_LOG_FLUSH();       
        ////temp end

    }
}
uint16_t USER_uart_tx(char *_str)
{
	uint16_t i;
	for(i = 0 ; i < 1000  ; i++   )
	{
		if(_str[i] == 0)
		{
			break;
		}
	}
        return i;
}

/**
 * @}
 */

Parents
  • Hi,

    I did a quick test of your app with nRF5 SDK 17.1.0 but I am not getting any data in the UART terminal after typing g. I did not test more than that though, so If you would like me to test on my end please provide detailed instructions on how to reproduce and ensure it works with the exact project you uploaded.

    That said, the only thing this code does is to read an input pin, and that takes a (very short) amount of time. I am not able to see why that matters here so I would investigate more, but perhaps you could try to replace it with a very short delay first (nrf_delay_us()) to see if it has the same effect?

  • Hi Einar

    i also used nrf52840 dongle as a central to communicate with PC sorry about not mention it1106.usb_cdc_ble_fordongle_use_this.zip

    above is what i used for pca10059, same path 

    Dk board sends packet to dongle by by ble nus service

    and dongle write packet string into serial terminal

    I made a test changing my variables 

    i use adcflag as global variable so that i can control ble by writing 'g' or 's'

    to stop or enable saadc

    1. when i set adcflag value as 1 which means i wrote uint8_t adcflag=0;

    comment or uncomment that if code has nothing do with its function

    everything goes well dk sends adc value perfectly

    but i don't want to enabling saadc and turnging on the board simultaneously 

    so setting adcflag=0 is what i want

    2. problem occurs when set adcflag as 0 from the beginnig

    i also tested by writing other word ( 3, 4)  to turn on LED on dk board

    and it turnd on led well. which means ble is not a issue.

    so when i comment that if code, i think timer or adc is facing error somehow

    i put nrf_delay_us(500); in code but it didn't work.

    i don't know if it is priority or memory problem 

    i did debug but no meaningful log was appeared

    thank you

  • I am a bit confused to be honest, and I am not able to get it to work even with your dongle project (though I am able to connect and NUS is working (so writing a line with "s" in one I see "s" in the other). 

    How is adcflag related to this issue? Is it so that the issue is not just your line 1177-1180 after all, and that something else is needed?

    Are you able to share a project that works out of the box (with detailed instructions, the best if it is enough to just connect with a phone nRF Connect and enable say notifications on the NUS Tx characteristic and write the commands (like "g" or "s") from the phone, to reduce the number of unknowns.

    Also, looking at your code it seems like it could use some cleanup (for instance, why is the initialization code inside the main loop and not before it, etc)? Without knowing what the root cause here is, it is typically much easier to spot issues of you clean-up and structure the code in a logical manner

  • my apologize for not clearing my question.

    i am in learning step with this stuff and  I had never faced this kind of issue

    so i was unable to give enough information

    i used the dk project with nrfToolBox and uart service.

    and i got a screeenshot of them

    i sent g from phone and as shown above,

    i could receive data from board

    this is what i got after i commented that if code in while loop.

    i coded so that it sends adcflag value when g or s is received.

    which is in line 144 uint8_t adcflag

    and as you suggested,

    i initialized adc before while loop.

    and yeah whether that if code is commented or not,

    it worked well. so think putting initial function in while loop

    got messed up in someway.

    thanks for your reply

    best regards

    Lee

Reply
  • my apologize for not clearing my question.

    i am in learning step with this stuff and  I had never faced this kind of issue

    so i was unable to give enough information

    i used the dk project with nrfToolBox and uart service.

    and i got a screeenshot of them

    i sent g from phone and as shown above,

    i could receive data from board

    this is what i got after i commented that if code in while loop.

    i coded so that it sends adcflag value when g or s is received.

    which is in line 144 uint8_t adcflag

    and as you suggested,

    i initialized adc before while loop.

    and yeah whether that if code is commented or not,

    it worked well. so think putting initial function in while loop

    got messed up in someway.

    thanks for your reply

    best regards

    Lee

Children
No Data
Related