Im trying to measure the time between 2 consecutive rising endges (Rising and Falling Edge together) on GPIO continuously but I did not find any leads. will appreciate the support.
Im trying to measure the time between 2 consecutive rising endges (Rising and Falling Edge together) on GPIO continuously but I did not find any leads. will appreciate the support.
after implementing the ppi example I start getting these values. But these values are in ms. How can I increase to nano seconds only the output so that i can capture upto 900 nano seconds
#include <stdint.h> #include "nrf_delay.h" #include "app_error.h" #include "nrf_drv_ppi.h" #include "nrf_drv_timer.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" //nrf_drv_timer_us_to_ticks #define PPI_EXAMPLE_TIMERS_us_PHASE_SHIFT_DELAY (1) // 1s = 10 * 100ms (Timer 0 interrupt) #define PPI_EXAMPLE_TIMER0_us_INTERVAL (1) // Timer interval in milliseconds #define PPI_EXAMPLE_TIMER1_us_INTERVAL (1) // Timer interval in milliseconds #define PPI_EXAMPLE_TIMER2_us_INTERVAL (1) // Timer interval in milliseconds static const nrf_drv_timer_t m_timer0 = NRF_DRV_TIMER_INSTANCE(0); static const nrf_drv_timer_t m_timer1 = NRF_DRV_TIMER_INSTANCE(1); static const nrf_drv_timer_t m_timer2 = NRF_DRV_TIMER_INSTANCE(2); static nrf_ppi_channel_t m_ppi_channel1; static nrf_ppi_channel_t m_ppi_channel2; static volatile uint32_t m_counter; static void timer0_event_handler(nrf_timer_event_t event_type, void * p_context) { ++m_counter; } /* Timer event handler. Not used since Timer1 and Timer2 are used only for PPI. */ static void empty_timer_handler(nrf_timer_event_t event_type, void * p_context) { } /** @brief Function for initializing the PPI peripheral. */ static void ppi_init(void) { uint32_t err_code = NRF_SUCCESS; err_code = nrf_drv_ppi_init(); APP_ERROR_CHECK(err_code); /* Configure 1st available PPI channel to stop TIMER0 counter on TIMER1 COMPARE[0] match, * which is every even number of seconds. */ err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel1); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(m_ppi_channel1, nrf_drv_timer_event_address_get(&m_timer1, NRF_TIMER_EVENT_COMPARE0), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_STOP)); APP_ERROR_CHECK(err_code); /* Configure 2nd available PPI channel to start TIMER0 counter at TIMER2 COMPARE[0] match, * which is every odd number of seconds. */ err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel2); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(m_ppi_channel2, nrf_drv_timer_event_address_get(&m_timer2, NRF_TIMER_EVENT_COMPARE0), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_START)); APP_ERROR_CHECK(err_code); // Enable both configured PPI channels err_code = nrf_drv_ppi_channel_enable(m_ppi_channel1); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_enable(m_ppi_channel2); APP_ERROR_CHECK(err_code); } /** @brief Function for Timer 0 initialization. * @details Timer 0 will be stopped and started by Timer 1 and Timer 2 respectively using PPI. * It is configured to generate an interrupt every 100ms. */ static void timer0_init(void) { // Check TIMER0 configuration for details. nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; timer_cfg.frequency = NRF_TIMER_FREQ_16MHz; ret_code_t err_code = nrf_drv_timer_init(&m_timer0, &timer_cfg, timer0_event_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer0, NRF_TIMER_CC_CHANNEL0, nrf_drv_timer_ms_to_ticks(&m_timer0, PPI_EXAMPLE_TIMER0_us_INTERVAL), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); } /** @brief Function for Timer 1 initialization. * @details Initializes TIMER1 peripheral to generate an event every 2 seconds. The events are * generated at even numbers of seconds after starting the example (2, 4, 6 ...) and they * are used to stop TIMER0 via PPI: TIMER1->EVENT_COMPARE[0] triggers TIMER0->TASK_STOP. */ static void timer1_init(void) { // Check TIMER1 configuration for details. nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; timer_cfg.frequency = NRF_TIMER_FREQ_16MHz; ret_code_t err_code = nrf_drv_timer_init(&m_timer1, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer1, NRF_TIMER_CC_CHANNEL0, nrf_drv_timer_ms_to_ticks(&m_timer1, PPI_EXAMPLE_TIMER1_us_INTERVAL), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false); } /** @brief Function for Timer 2 initialization. * @details Initializes TIMER2 peripheral to generate an event every 2 seconds. The events are * generated at odd numbers of seconds after starting the example (3, 5, 7 ...) and they * are used to start TIMER0 via PPI: TIMER2->EVENT_COMPARE[0] triggers TIMER0->TASK_START. */ static void timer2_init(void) { // Check TIMER2 configuration for details. nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; timer_cfg.frequency = NRF_TIMER_FREQ_16MHz; ret_code_t err_code = nrf_drv_timer_init(&m_timer2, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer2, NRF_TIMER_CC_CHANNEL0, nrf_drv_timer_ms_to_ticks(&m_timer2, PPI_EXAMPLE_TIMER2_us_INTERVAL), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false); } /** * @brief Function for application main entry. */ int main(void) { uint32_t old_val = 0; uint32_t err_code; err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); ppi_init(); timer0_init(); // Timer used to increase m_counter every 100ms. timer1_init(); // Timer to generate events on even number of seconds - stopping Timer 0 timer2_init(); // Timer to generate events on odd number of seconds - starting Timer 0 NRF_LOG_INFO("PPI example started."); // Start clock. nrf_drv_timer_enable(&m_timer0); /* Below delay is implemented to ensure that Timer0 interrupt will execute before PPI action. * Please be aware that such solution was tested only in this simple example code. In case * of more complex systems with higher level interrupts this may lead to not correct timers * synchronization. */ nrf_delay_us(1); nrf_drv_timer_enable(&m_timer1); m_counter = (uint32_t)-PPI_EXAMPLE_TIMERS_us_PHASE_SHIFT_DELAY; // Timer 2 will start one second after Timer 1 (m_counter will equal 0 after 1s) // while (m_counter != 0) // { // just wait //} nrf_drv_timer_enable(&m_timer2); while (true) { uint32_t counter = m_counter; if (old_val != counter) { old_val = counter; NRF_LOG_INFO("Current count: %u", counter); NRF_LOG_FLUSH(); } } } /** @} */ #include <stdint.h> #include "nrf_delay.h" #include "app_error.h" #include "nrf_drv_ppi.h" #include "nrf_drv_timer.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" //nrf_drv_timer_us_to_ticks #define PPI_EXAMPLE_TIMERS_us_PHASE_SHIFT_DELAY (1) // 1s = 10 * 100ms (Timer 0 interrupt) #define PPI_EXAMPLE_TIMER0_us_INTERVAL (1) // Timer interval in milliseconds #define PPI_EXAMPLE_TIMER1_us_INTERVAL (1) // Timer interval in milliseconds #define PPI_EXAMPLE_TIMER2_us_INTERVAL (1) // Timer interval in milliseconds static const nrf_drv_timer_t m_timer0 = NRF_DRV_TIMER_INSTANCE(0); static const nrf_drv_timer_t m_timer1 = NRF_DRV_TIMER_INSTANCE(1); static const nrf_drv_timer_t m_timer2 = NRF_DRV_TIMER_INSTANCE(2); static nrf_ppi_channel_t m_ppi_channel1; static nrf_ppi_channel_t m_ppi_channel2; static volatile uint32_t m_counter; static void timer0_event_handler(nrf_timer_event_t event_type, void * p_context) { ++m_counter; } /* Timer event handler. Not used since Timer1 and Timer2 are used only for PPI. */ static void empty_timer_handler(nrf_timer_event_t event_type, void * p_context) { } /** @brief Function for initializing the PPI peripheral. */ static void ppi_init(void) { uint32_t err_code = NRF_SUCCESS; err_code = nrf_drv_ppi_init(); APP_ERROR_CHECK(err_code); /* Configure 1st available PPI channel to stop TIMER0 counter on TIMER1 COMPARE[0] match, * which is every even number of seconds. */ err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel1); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(m_ppi_channel1, nrf_drv_timer_event_address_get(&m_timer1, NRF_TIMER_EVENT_COMPARE0), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_STOP)); APP_ERROR_CHECK(err_code); /* Configure 2nd available PPI channel to start TIMER0 counter at TIMER2 COMPARE[0] match, * which is every odd number of seconds. */ err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel2); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(m_ppi_channel2, nrf_drv_timer_event_address_get(&m_timer2, NRF_TIMER_EVENT_COMPARE0), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_START)); APP_ERROR_CHECK(err_code); // Enable both configured PPI channels err_code = nrf_drv_ppi_channel_enable(m_ppi_channel1); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_enable(m_ppi_channel2); APP_ERROR_CHECK(err_code); } /** @brief Function for Timer 0 initialization. * @details Timer 0 will be stopped and started by Timer 1 and Timer 2 respectively using PPI. * It is configured to generate an interrupt every 100ms. */ static void timer0_init(void) { // Check TIMER0 configuration for details. nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; timer_cfg.frequency = NRF_TIMER_FREQ_16MHz; ret_code_t err_code = nrf_drv_timer_init(&m_timer0, &timer_cfg, timer0_event_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer0, NRF_TIMER_CC_CHANNEL0, nrf_drv_timer_ms_to_ticks(&m_timer0, PPI_EXAMPLE_TIMER0_us_INTERVAL), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); } /** @brief Function for Timer 1 initialization. * @details Initializes TIMER1 peripheral to generate an event every 2 seconds. The events are * generated at even numbers of seconds after starting the example (2, 4, 6 ...) and they * are used to stop TIMER0 via PPI: TIMER1->EVENT_COMPARE[0] triggers TIMER0->TASK_STOP. */ static void timer1_init(void) { // Check TIMER1 configuration for details. nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; timer_cfg.frequency = NRF_TIMER_FREQ_16MHz; ret_code_t err_code = nrf_drv_timer_init(&m_timer1, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer1, NRF_TIMER_CC_CHANNEL0, nrf_drv_timer_ms_to_ticks(&m_timer1, PPI_EXAMPLE_TIMER1_us_INTERVAL), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false); } /** @brief Function for Timer 2 initialization. * @details Initializes TIMER2 peripheral to generate an event every 2 seconds. The events are * generated at odd numbers of seconds after starting the example (3, 5, 7 ...) and they * are used to start TIMER0 via PPI: TIMER2->EVENT_COMPARE[0] triggers TIMER0->TASK_START. */ static void timer2_init(void) { // Check TIMER2 configuration for details. nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; timer_cfg.frequency = NRF_TIMER_FREQ_16MHz; ret_code_t err_code = nrf_drv_timer_init(&m_timer2, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer2, NRF_TIMER_CC_CHANNEL0, nrf_drv_timer_ms_to_ticks(&m_timer2, PPI_EXAMPLE_TIMER2_us_INTERVAL), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false); } /** * @brief Function for application main entry. */ int main(void) { uint32_t old_val = 0; uint32_t err_code; err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); ppi_init(); timer0_init(); // Timer used to increase m_counter every 100ms. timer1_init(); // Timer to generate events on even number of seconds - stopping Timer 0 timer2_init(); // Timer to generate events on odd number of seconds - starting Timer 0 NRF_LOG_INFO("PPI example started."); // Start clock. nrf_drv_timer_enable(&m_timer0); /* Below delay is implemented to ensure that Timer0 interrupt will execute before PPI action. * Please be aware that such solution was tested only in this simple example code. In case * of more complex systems with higher level interrupts this may lead to not correct timers * synchronization. */ nrf_delay_us(1); nrf_drv_timer_enable(&m_timer1); m_counter = (uint32_t)-PPI_EXAMPLE_TIMERS_us_PHASE_SHIFT_DELAY; // Timer 2 will start one second after Timer 1 (m_counter will equal 0 after 1s) // while (m_counter != 0) // { // just wait //} nrf_drv_timer_enable(&m_timer2); while (true) { uint32_t counter = m_counter; if (old_val != counter) { old_val = counter; NRF_LOG_INFO("Current count: %u", counter); NRF_LOG_FLUSH(); } } } /** @} */
I changed the frequency from 31250Hz to 16MHz, but resolution did not get affected. The one more thing I did not uses LFCLK (crystal) as this was the optional for custom board.
Hi,
You may try this code instead:
/** * Copyright (c) 2014 - 2021, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include <stdint.h> #include "nrf_delay.h" #include "app_error.h" #include "boards.h" #include "nrf_drv_ppi.h" #include "nrf_drv_timer.h" #include "nrf_drv_gpiote.h" #include "nrf_delay.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" /* Signal generator output */ #define SIG_OUT_PIN 26 #define SIG_OUT_INTERVAL_US 1 #define SIG_INPUT_PIN 27 static const nrf_drv_timer_t m_timer1 = NRF_DRV_TIMER_INSTANCE(1); static const nrf_drv_timer_t m_timer2 = NRF_DRV_TIMER_INSTANCE(2); static const nrf_drv_timer_t m_timer3 = NRF_DRV_TIMER_INSTANCE(3); static volatile bool m_sample_pending; /* Timer event handler. Not used since Timer1 and Timer2 are used only for PPI. */ static void empty_timer_handler(nrf_timer_event_t event_type, void * p_context) { } static void signal_capture_handler(nrf_timer_event_t event_type, void * p_context) { uint32_t err_code; uint32_t timer_ticks; timer_ticks = nrf_drv_timer_capture(&m_timer3, NRF_TIMER_CC_CHANNEL0); NRF_LOG_INFO("Signal period: " NRF_LOG_FLOAT_MARKER " us", NRF_LOG_FLOAT((float)timer_ticks/16.0f)); nrf_drv_timer_clear(&m_timer3); nrf_drv_timer_clear(&m_timer2); m_sample_pending = false; nrf_drv_gpiote_in_event_disable(SIG_INPUT_PIN); } void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { } static void log_init(void) { uint32_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } static void hf_clock_start(void) { /* Start HFXO for better accuracy */ NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; NRF_CLOCK->TASKS_HFCLKSTART = 1; while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) {}; } static void signal_generator_start(void) { uint32_t err_code; uint32_t out_task_addr; uint32_t timer_evt0_addr; nrf_ppi_channel_t ppi_channel; nrf_drv_gpiote_out_config_t signal_out = GPIOTE_CONFIG_OUT_TASK_TOGGLE(true); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; /* Configure timer and output signal */ err_code = nrf_drv_timer_init(&m_timer1, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer1, NRF_TIMER_CC_CHANNEL0, nrfx_timer_us_to_ticks(&m_timer1, SIG_OUT_INTERVAL_US), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false); timer_evt0_addr = nrf_drv_timer_compare_event_address_get(&m_timer1,NRF_TIMER_CC_CHANNEL0); /* Configure GPIOTE task */ err_code = nrf_drv_gpiote_out_init(SIG_OUT_PIN, &signal_out); APP_ERROR_CHECK(err_code); out_task_addr = nrf_drv_gpiote_out_task_addr_get(SIG_OUT_PIN); nrf_drv_gpiote_out_task_enable(SIG_OUT_PIN); /* Connect timer event to GPIOTE task through PPI */ err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, timer_evt0_addr, out_task_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); /* Start signal generation */ nrf_drv_timer_enable(&m_timer1); } static void signal_input_sampling_init(void) { uint32_t err_code; nrf_ppi_channel_t ppi_channel; uint32_t gpiote_evt_addr; uint32_t count_task_addr; uint32_t timer_start_addr; uint32_t timer_stop_addr; uint32_t timer_evt0_addr; uint32_t timer_evt1_addr; nrf_drv_gpiote_in_config_t input_config = GPIOTE_CONFIG_IN_SENSE_HITOLO(true); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_gpiote_in_init(SIG_INPUT_PIN, &input_config, in_pin_handler); APP_ERROR_CHECK(err_code); gpiote_evt_addr = nrf_drv_gpiote_in_event_addr_get(SIG_INPUT_PIN); timer_cfg.mode = NRF_TIMER_MODE_COUNTER; err_code = nrf_drv_timer_init(&m_timer2, &timer_cfg, signal_capture_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_compare(&m_timer2, NRF_TIMER_CC_CHANNEL0, 1, false); nrf_drv_timer_compare(&m_timer2, NRF_TIMER_CC_CHANNEL1, 2, true); count_task_addr = nrf_drv_timer_task_address_get(&m_timer2, NRF_TIMER_TASK_COUNT); timer_evt0_addr = nrf_drv_timer_compare_event_address_get(&m_timer2, NRF_TIMER_CC_CHANNEL0); timer_evt1_addr = nrf_drv_timer_compare_event_address_get(&m_timer2, NRF_TIMER_CC_CHANNEL1); nrf_drv_timer_enable(&m_timer2); timer_cfg.mode = NRF_TIMER_MODE_TIMER; err_code = nrf_drv_timer_init(&m_timer3, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); timer_start_addr = nrf_drv_timer_task_address_get(&m_timer3, NRF_TIMER_TASK_START); timer_stop_addr = nrf_drv_timer_task_address_get(&m_timer3, NRF_TIMER_TASK_STOP); err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, gpiote_evt_addr, count_task_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, timer_evt0_addr, timer_start_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, timer_evt1_addr, timer_stop_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); } static void ppi_init(void) { uint32_t err_code = nrf_drv_ppi_init(); APP_ERROR_CHECK(err_code); } static void gpiote_init(void) { uint32_t err_code = nrf_drv_gpiote_init(); APP_ERROR_CHECK(err_code); } static void signal_input_sample(void) { if (!m_sample_pending) { nrf_drv_gpiote_in_event_enable(SIG_INPUT_PIN, false); m_sample_pending = true; } } /** * @brief Function for application main entry. */ void main(void) { hf_clock_start(); log_init(); ppi_init(); gpiote_init(); signal_generator_start(); signal_input_sampling_init(); while (true) { if (NRF_LOG_PROCESS() == false) { //__WFE(); signal_input_sample(); nrf_delay_ms(1000); } } } /** @} */
Hi,
You may try this code instead:
/** * Copyright (c) 2014 - 2021, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include <stdint.h> #include "nrf_delay.h" #include "app_error.h" #include "boards.h" #include "nrf_drv_ppi.h" #include "nrf_drv_timer.h" #include "nrf_drv_gpiote.h" #include "nrf_delay.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" /* Signal generator output */ #define SIG_OUT_PIN 26 #define SIG_OUT_INTERVAL_US 1 #define SIG_INPUT_PIN 27 static const nrf_drv_timer_t m_timer1 = NRF_DRV_TIMER_INSTANCE(1); static const nrf_drv_timer_t m_timer2 = NRF_DRV_TIMER_INSTANCE(2); static const nrf_drv_timer_t m_timer3 = NRF_DRV_TIMER_INSTANCE(3); static volatile bool m_sample_pending; /* Timer event handler. Not used since Timer1 and Timer2 are used only for PPI. */ static void empty_timer_handler(nrf_timer_event_t event_type, void * p_context) { } static void signal_capture_handler(nrf_timer_event_t event_type, void * p_context) { uint32_t err_code; uint32_t timer_ticks; timer_ticks = nrf_drv_timer_capture(&m_timer3, NRF_TIMER_CC_CHANNEL0); NRF_LOG_INFO("Signal period: " NRF_LOG_FLOAT_MARKER " us", NRF_LOG_FLOAT((float)timer_ticks/16.0f)); nrf_drv_timer_clear(&m_timer3); nrf_drv_timer_clear(&m_timer2); m_sample_pending = false; nrf_drv_gpiote_in_event_disable(SIG_INPUT_PIN); } void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { } static void log_init(void) { uint32_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } static void hf_clock_start(void) { /* Start HFXO for better accuracy */ NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; NRF_CLOCK->TASKS_HFCLKSTART = 1; while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) {}; } static void signal_generator_start(void) { uint32_t err_code; uint32_t out_task_addr; uint32_t timer_evt0_addr; nrf_ppi_channel_t ppi_channel; nrf_drv_gpiote_out_config_t signal_out = GPIOTE_CONFIG_OUT_TASK_TOGGLE(true); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; /* Configure timer and output signal */ err_code = nrf_drv_timer_init(&m_timer1, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_extended_compare(&m_timer1, NRF_TIMER_CC_CHANNEL0, nrfx_timer_us_to_ticks(&m_timer1, SIG_OUT_INTERVAL_US), NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false); timer_evt0_addr = nrf_drv_timer_compare_event_address_get(&m_timer1,NRF_TIMER_CC_CHANNEL0); /* Configure GPIOTE task */ err_code = nrf_drv_gpiote_out_init(SIG_OUT_PIN, &signal_out); APP_ERROR_CHECK(err_code); out_task_addr = nrf_drv_gpiote_out_task_addr_get(SIG_OUT_PIN); nrf_drv_gpiote_out_task_enable(SIG_OUT_PIN); /* Connect timer event to GPIOTE task through PPI */ err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, timer_evt0_addr, out_task_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); /* Start signal generation */ nrf_drv_timer_enable(&m_timer1); } static void signal_input_sampling_init(void) { uint32_t err_code; nrf_ppi_channel_t ppi_channel; uint32_t gpiote_evt_addr; uint32_t count_task_addr; uint32_t timer_start_addr; uint32_t timer_stop_addr; uint32_t timer_evt0_addr; uint32_t timer_evt1_addr; nrf_drv_gpiote_in_config_t input_config = GPIOTE_CONFIG_IN_SENSE_HITOLO(true); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_gpiote_in_init(SIG_INPUT_PIN, &input_config, in_pin_handler); APP_ERROR_CHECK(err_code); gpiote_evt_addr = nrf_drv_gpiote_in_event_addr_get(SIG_INPUT_PIN); timer_cfg.mode = NRF_TIMER_MODE_COUNTER; err_code = nrf_drv_timer_init(&m_timer2, &timer_cfg, signal_capture_handler); APP_ERROR_CHECK(err_code); nrf_drv_timer_compare(&m_timer2, NRF_TIMER_CC_CHANNEL0, 1, false); nrf_drv_timer_compare(&m_timer2, NRF_TIMER_CC_CHANNEL1, 2, true); count_task_addr = nrf_drv_timer_task_address_get(&m_timer2, NRF_TIMER_TASK_COUNT); timer_evt0_addr = nrf_drv_timer_compare_event_address_get(&m_timer2, NRF_TIMER_CC_CHANNEL0); timer_evt1_addr = nrf_drv_timer_compare_event_address_get(&m_timer2, NRF_TIMER_CC_CHANNEL1); nrf_drv_timer_enable(&m_timer2); timer_cfg.mode = NRF_TIMER_MODE_TIMER; err_code = nrf_drv_timer_init(&m_timer3, &timer_cfg, empty_timer_handler); APP_ERROR_CHECK(err_code); timer_start_addr = nrf_drv_timer_task_address_get(&m_timer3, NRF_TIMER_TASK_START); timer_stop_addr = nrf_drv_timer_task_address_get(&m_timer3, NRF_TIMER_TASK_STOP); err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, gpiote_evt_addr, count_task_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, timer_evt0_addr, timer_start_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); err_code = nrf_drv_ppi_channel_alloc(&ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(ppi_channel, timer_evt1_addr, timer_stop_addr); APP_ERROR_CHECK(err_code); nrf_drv_ppi_channel_enable(ppi_channel); } static void ppi_init(void) { uint32_t err_code = nrf_drv_ppi_init(); APP_ERROR_CHECK(err_code); } static void gpiote_init(void) { uint32_t err_code = nrf_drv_gpiote_init(); APP_ERROR_CHECK(err_code); } static void signal_input_sample(void) { if (!m_sample_pending) { nrf_drv_gpiote_in_event_enable(SIG_INPUT_PIN, false); m_sample_pending = true; } } /** * @brief Function for application main entry. */ void main(void) { hf_clock_start(); log_init(); ppi_init(); gpiote_init(); signal_generator_start(); signal_input_sampling_init(); while (true) { if (NRF_LOG_PROCESS() == false) { //__WFE(); signal_input_sample(); nrf_delay_ms(1000); } } } /** @} */