Device match in ESB

My project is based on the  examples\proprietary_rf\esb_low_power_prx\pca10056\blank\arm5_no_packs, and modifications have been made with reference to https://devzone.nordicsemi.com/f/nordic-q-a/32481/device-match/133989,  and NRF_ESB_MAX_PAYLOAD_LENGTH = 64 with dynamic payload length.

I have encountered a issue.

When packet length increase in transmitter, not every length can communicate successfully. And success and failure  take turns occurring.

eg. 

NRF_RADIO->DACNF|= (1U << (pipe + RADIO_DACNF_TXADD0_Pos)),

length in nrf_esb_payload_t is 15 Byte or 16Byte,  receiver can receive this message, but  length in nrf_esb_payload_t is 17 Byte or 18Byte, failed.

19,20Byte success,and 21 22failed .....

and NRF_RADIO->DACNF|= (0U << (pipe + RADIO_DACNF_TXADD0_Pos)), 

length in nrf_esb_payload_t is 15 Byte or 16Byte,  receiver cannot receive this message, but  length in nrf_esb_payload_t is 17 Byte or 18Byte, success.

19,20Byte failed,and 21, 22Byte success .....

Hope someone can help me.

52833,SDK 17.

Best regards,

  • Hello,

    Not sure I understand, I took the two examples:

    nRF5_SDK_17.1.0_ddde560\examples\proprietary_rf\esb_low_power_ptx 
    nRF5_SDK_17.1.0_ddde560\examples\proprietary_rf\esb_low_power_prx

    I changed NRF_ESB_MAX_PAYLOAD_LENGTH to 64.

    Then I tried with different payload lengths on the transmitter by simply trying various tx_payload.length before calling nrf_esb_write_payload(). I am not able to make it fail:

    What changes are you doing?

    Edit: I notice you have modifed DACNF register here, please be aware of the statement in the datasheet:
    https://infocenter.nordicsemi.com/topic/ps_nrf52833/radio.html#concept_s3y_z2j_4r 

    "The device address match feature is tailored for address whitelisting in Bluetooth low energy and similar implementations." So it's not tested or intended to work with ESB.

    Kenneth

  • static void update_rf_payload_format_esb_dpl(uint32_t payload_length)
    {
    #if (NRF_ESB_MAX_PAYLOAD_LENGTH <= 32)
        // Using 6 bits for length
        NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |
                           (6 << RADIO_PCNF0_LFLEN_Pos) |
                           (3 << RADIO_PCNF0_S1LEN_Pos) ;
    #else
        // Using 8 bits for length
        NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |
                           (8 << RADIO_PCNF0_LFLEN_Pos) |
                           (3 << RADIO_PCNF0_S1LEN_Pos) ;
    #endif
        NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Enabled << RADIO_PCNF1_WHITEEN_Pos) |
                           (RADIO_PCNF1_ENDIAN_Little << RADIO_PCNF1_ENDIAN_Pos) |
                           ((m_wukong_addr.addr_length - 1) << RADIO_PCNF1_BALEN_Pos) |
                           (0 << RADIO_PCNF1_STATLEN_Pos) |
                           (MG_WUKONG_MAX_PAYLOAD_LENGTH << RADIO_PCNF1_MAXLEN_Pos);
    }
    
    
    void mg_wukong_whitelist_add(uint8_t pipe, const uint8_t *addr)
    {
        if (MG_WUKONG_MODE_MTX == m_config_local.mode)
        {
            return;
        }
    
        NRF_RADIO->DAP[pipe] = ((((uint16_t)addr[5]) << 8)
    
                                | (((uint16_t)addr[4])));
    
        NRF_RADIO->DAB[pipe] = ((((uint32_t)addr[3]) << 24)
    
                                | (((uint32_t)addr[2]) << 16)
    
                                | (((uint32_t)addr[1]) << 8)
    
                                | (((uint32_t)addr[0])));
    
        NRF_RADIO->DACNF |= (1U << (pipe + RADIO_DACNF_TXADD0_Pos));
    
        NRF_RADIO->DACNF |= (1U << pipe);
    }
    

    #ifdef NRF52832_XXAA ==> #ifdef   1

    I marked what I thought was the key difference.

    Or, Based on the lastest answer's  nrf_esb.c  in https://devzone.nordicsemi.com/f/nordic-q-a/32481/device-match/133989  ,could you provide me new examples(esb_low_power_ptx and esb_low_power_prx) on sdk17.0.2 .

    this is the file nrf_esb.c in https://devzone.nordicsemi.com/f/nordic-q-a/32481/device-match/133989 

    /**
     * Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
     * 
     * All rights reserved.
     * 
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     * 
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     * 
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     * 
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     * 
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     * 
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     * 
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     * 
     */
    
    #include "nrf_error.h"
    #include "nrf_esb.h"
    #include "nrf_esb_error_codes.h"
    #include "nrf_gpio.h"
    #include <string.h>
    #include <stddef.h>
    #include "sdk_common.h"
    #include "sdk_macros.h"
    #include "app_util.h"
    #include "nrf_log.h"
    #include "nrf_delay.h"
    
    #define BIT_MASK_UINT_8(x) (0xFF >> (8 - (x)))
    #define NRF_ESB_PIPE_COUNT 8
    
    #define S0BYTE 0xFF
    
    // Constant parameters
    #define RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS        (48)        /**< 2 Mb RX wait for acknowledgment time-out value. Smallest reliable value - 43. */
    #define RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS        (64)        /**< 1 Mb RX wait for acknowledgment time-out value. Smallest reliable value - 59. */
    #define RX_WAIT_FOR_ACK_TIMEOUT_US_250KBPS      (250)       /**< 250 Kb RX wait for acknowledgment time-out value. */
    #define RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS_BLE    (73)        /**< 1 Mb RX wait for acknowledgment time-out (combined with BLE). Smallest reliable value - 68.*/
    
    // Interrupt flags
    #define     NRF_ESB_INT_TX_SUCCESS_MSK          0x01        /**< Interrupt mask value for TX success. */
    #define     NRF_ESB_INT_TX_FAILED_MSK           0x02        /**< Interrupt mask value for TX failure. */
    #define     NRF_ESB_INT_RX_DATA_RECEIVED_MSK    0x04        /**< Interrupt mask value for RX_DR. */
    
    #define     NRF_ESB_PID_RESET_VALUE             0xFF        /**< Invalid PID value which is guaranteed to not collide with any valid PID value. */
    #define     NRF_ESB_PID_MAX                     3           /**< Maximum value for PID. */
    #define     NRF_ESB_CRC_RESET_VALUE             0xFFFF      /**< CRC reset value. */
    
    // Internal Enhanced ShockBurst module state.
    typedef enum {
        NRF_ESB_STATE_IDLE,                                     /**< Module idle. */
        NRF_ESB_STATE_PTX_TX,                                   /**< Module transmitting without acknowledgment. */
        NRF_ESB_STATE_PTX_TX_ACK,                               /**< Module transmitting with acknowledgment. */
        NRF_ESB_STATE_PTX_RX_ACK,                               /**< Module transmitting with acknowledgment and reception of payload with the acknowledgment response. */
        NRF_ESB_STATE_PRX,                                      /**< Module receiving packets without acknowledgment. */
        NRF_ESB_STATE_PRX_SEND_ACK,                             /**< Module transmitting acknowledgment in RX mode. */
    } nrf_esb_mainstate_t;
    
    
    #define DISABLE_RF_IRQ()      NVIC_DisableIRQ(RADIO_IRQn)
    #define ENABLE_RF_IRQ()       NVIC_EnableIRQ(RADIO_IRQn)
    
    #define _RADIO_SHORTS_COMMON ( RADIO_SHORTS_READY_START_Msk | RADIO_SHORTS_END_DISABLE_Msk | \
                RADIO_SHORTS_ADDRESS_RSSISTART_Msk | RADIO_SHORTS_DISABLED_RSSISTOP_Msk )
    
    #define VERIFY_PAYLOAD_LENGTH(p)                            \
    do                                                          \
    {                                                           \
        if (p->length == 0 ||                                    \
           p->length > NRF_ESB_MAX_PAYLOAD_LENGTH ||            \
           (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB &&  \
            p->length > m_config_local.payload_length))         \
        {                                                       \
            return NRF_ERROR_INVALID_LENGTH;                    \
        }                                                       \
    }while (0)
    
    
    /* @brief Structure holding pipe info PID and CRC and acknowledgment payload. */
    typedef struct
    {
        uint16_t    crc;                                      /**< CRC value of the last received packet (Used to detect retransmits). */
        uint8_t     pid;                                      /**< Packet ID of the last received packet (Used to detect retransmits). */
        bool        ack_payload;                              /**< Flag indicating the state of the transmission of acknowledgment payloads. */
    	uint8_t     s0;
    } pipe_info_t;
    
    
    /* @brief  First-in, first-out queue of payloads to be transmitted. */
    typedef struct
    {
        nrf_esb_payload_t * p_payload[NRF_ESB_TX_FIFO_SIZE];  /**< Pointer to the actual queue. */
        uint32_t            entry_point;                      /**< Current start of queue. */
        uint32_t            exit_point;                       /**< Current end of queue. */
        uint32_t            count;                            /**< Current number of elements in the queue. */
    } nrf_esb_payload_tx_fifo_t;
    
    
    /* @brief First-in, first-out queue of received payloads. */
    typedef struct
    {
        nrf_esb_payload_t * p_payload[NRF_ESB_RX_FIFO_SIZE];  /**< Pointer to the actual queue. */
        uint32_t            entry_point;                      /**< Current start of queue. */
        uint32_t            exit_point;                       /**< Current end of queue. */
        uint32_t            count;                            /**< Current number of elements in the queue. */
    } nrf_esb_payload_rx_fifo_t;
    
    
    /**@brief Enhanced ShockBurst address.
     *
     * Enhanced ShockBurst addresses consist of a base address and a prefix
     *          that is unique for each pipe. See @ref esb_addressing in the ESB user
     *          guide for more information.
    */
    typedef struct
    {
        uint8_t base_addr_p0[4];        /**< Base address for pipe 0 encoded in big endian. */
        uint8_t base_addr_p1[4];        /**< Base address for pipe 1-7 encoded in big endian. */
        uint8_t pipe_prefixes[8];       /**< Address prefix for pipe 0 to 7. */
        uint8_t num_pipes;              /**< Number of pipes available. */
        uint8_t addr_length;            /**< Length of the address including the prefix. */
        uint8_t rx_pipes_enabled;       /**< Bitfield for enabled pipes. */
        uint8_t rf_channel;             /**< Channel to use (must be between 0 and 100). */
    } nrf_esb_address_t;
    
    
    // Module state
    static bool                         m_esb_initialized           = false;
    static nrf_esb_mainstate_t          m_nrf_esb_mainstate         = NRF_ESB_STATE_IDLE;
    static nrf_esb_payload_t          * mp_current_payload;
    
    static nrf_esb_event_handler_t      m_event_handler;
    
    // Address parameters
    __ALIGN(4) static nrf_esb_address_t m_esb_addr = NRF_ESB_ADDR_DEFAULT;
    
    // RF parameters
    static nrf_esb_config_t             m_config_local;
    
    // TX FIFO
    static nrf_esb_payload_t            m_tx_fifo_payload[NRF_ESB_TX_FIFO_SIZE];
    static nrf_esb_payload_tx_fifo_t    m_tx_fifo;
    
    // RX FIFO
    static nrf_esb_payload_t            m_rx_fifo_payload[NRF_ESB_RX_FIFO_SIZE];
    static nrf_esb_payload_rx_fifo_t    m_rx_fifo;
    
    // Payload buffers
    static  uint8_t                     m_tx_payload_buffer[NRF_ESB_MAX_PAYLOAD_LENGTH + 3]; //Added 1 for S0
    static  uint8_t                     m_rx_payload_buffer[NRF_ESB_MAX_PAYLOAD_LENGTH + 3]; //Added 1 for S0
    
    // Run time variables
    static volatile uint32_t            m_interrupt_flags = 0;
    static uint8_t                      m_pids[NRF_ESB_PIPE_COUNT];
    static pipe_info_t                  m_rx_pipe_info[NRF_ESB_PIPE_COUNT];
    static volatile uint32_t            m_retransmits_remaining;
    static volatile uint32_t            m_last_tx_attempts;
    static volatile uint32_t            m_wait_for_ack_timeout_us;
    
    // nRF52 address workaround enable
    #ifdef NRF52
    static bool                         m_address_hang_fix_enable = true;
    #endif
    static uint32_t                     m_radio_shorts_common = _RADIO_SHORTS_COMMON;
    
    // These function pointers are changed dynamically, depending on protocol configuration and state.
    static void (*on_radio_disabled)(void) = 0;
    static void (*on_radio_end)(void) = 0;
    static void (*update_rf_payload_format)(uint32_t payload_length) = 0;
    
    
    // The following functions are assigned to the function pointers above.
    static void on_radio_disabled_tx_noack(void);
    static void on_radio_disabled_tx(void);
    static void on_radio_disabled_tx_wait_for_ack(void);
    static void on_radio_disabled_rx(void);
    static void on_radio_disabled_rx_ack(void);
    
    
    #define NRF_ESB_ADDR_UPDATE_MASK_BASE0          (1 << 0)    /*< Mask value to signal updating BASE0 radio address. */
    #define NRF_ESB_ADDR_UPDATE_MASK_BASE1          (1 << 1)    /*< Mask value to signal updating BASE1 radio address. */
    #define NRF_ESB_ADDR_UPDATE_MASK_PREFIX         (1 << 2)    /*< Mask value to signal updating radio prefixes. */
    
    
    // Function to do bytewise bit-swap on an unsigned 32-bit value
    static uint32_t bytewise_bit_swap(uint8_t const * p_inp)
    {
        uint32_t inp = (*(uint32_t*)p_inp);
    #if __CORTEX_M == (0x04U)
        return __REV((uint32_t)__RBIT(inp)); //lint -esym(628, __rev) -esym(526, __rev) -esym(628, __rbit) -esym(526, __rbit) */
    #else
        inp = (inp & 0xF0F0F0F0) >> 4 | (inp & 0x0F0F0F0F) << 4;
        inp = (inp & 0xCCCCCCCC) >> 2 | (inp & 0x33333333) << 2;
        inp = (inp & 0xAAAAAAAA) >> 1 | (inp & 0x55555555) << 1;
        return inp;
    #endif
    }
    
    
    // Internal function to convert base addresses from nRF24L type addressing to nRF51 type addressing
    static uint32_t addr_conv(uint8_t const* p_addr)
    {
        return __REV(bytewise_bit_swap(p_addr)); //lint -esym(628, __rev) -esym(526, __rev) */
    }
    
    
    static ret_code_t apply_address_workarounds()
    {
    #ifdef NRF52
        //  Set up radio parameters.
        NRF_RADIO->MODECNF0 = (NRF_RADIO->MODECNF0 & ~RADIO_MODECNF0_RU_Msk) | RADIO_MODECNF0_RU_Default << RADIO_MODECNF0_RU_Pos;
    
        // Workaround for nRF52832 Rev 1 Errata 102 and nRF52832 Rev 1 Errata 106. This will reduce sensitivity by 3dB.
        *((volatile uint32_t *)0x40001774) = (*((volatile uint32_t *)0x40001774) & 0xFFFFFFFE) | 0x01000000;
    #endif
        return NRF_SUCCESS;
    }
    
    
    static void update_rf_payload_format_esb_dpl(uint32_t payload_length)
    {
    #if (NRF_ESB_MAX_PAYLOAD_LENGTH <= 32)
        // Using 6 bits for length
        NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |  //Setting 1 for S0 byte
                           (6 << RADIO_PCNF0_LFLEN_Pos) |
                           (3 << RADIO_PCNF0_S1LEN_Pos) ;
    #else
        // Using 8 bits for length
        NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |  //Setting 1 for S0 byte
                           (8 << RADIO_PCNF0_LFLEN_Pos) |
                           (3 << RADIO_PCNF0_S1LEN_Pos) ;
    #endif
        NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled    << RADIO_PCNF1_WHITEEN_Pos) |
                           (RADIO_PCNF1_ENDIAN_Little          << RADIO_PCNF1_ENDIAN_Pos)  |
                           ((m_esb_addr.addr_length - 1)    << RADIO_PCNF1_BALEN_Pos)   |
                           (0                               << RADIO_PCNF1_STATLEN_Pos) |
                           (NRF_ESB_MAX_PAYLOAD_LENGTH      << RADIO_PCNF1_MAXLEN_Pos);
    }
    
    
    static void update_rf_payload_format_esb(uint32_t payload_length)
    {
        NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |
                           (0 << RADIO_PCNF0_LFLEN_Pos) |
                           (1 << RADIO_PCNF0_S1LEN_Pos);
    
        NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled    << RADIO_PCNF1_WHITEEN_Pos) |
                           (RADIO_PCNF1_ENDIAN_Little          << RADIO_PCNF1_ENDIAN_Pos)  |
                           ((m_esb_addr.addr_length - 1)    << RADIO_PCNF1_BALEN_Pos)   |
                           (payload_length                  << RADIO_PCNF1_STATLEN_Pos) |
                           (payload_length                  << RADIO_PCNF1_MAXLEN_Pos);
    }
    
    
    static void update_radio_addresses(uint8_t update_mask)
    {
        if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_BASE0) != 0)
        {
            NRF_RADIO->BASE0 = addr_conv(m_esb_addr.base_addr_p0);
        }
    
        if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_BASE1) != 0)
        {
            NRF_RADIO->BASE1 = addr_conv(m_esb_addr.base_addr_p1);
        }
    
        if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_PREFIX) != 0)
        {
            NRF_RADIO->PREFIX0 = bytewise_bit_swap(&m_esb_addr.pipe_prefixes[0]);
            NRF_RADIO->PREFIX1 = bytewise_bit_swap(&m_esb_addr.pipe_prefixes[4]);
        }
    }
    
    
    static void update_radio_tx_power()
    {
        NRF_RADIO->TXPOWER = m_config_local.tx_output_power << RADIO_TXPOWER_TXPOWER_Pos;
    }
    
    
    static bool update_radio_bitrate()
    {
        NRF_RADIO->MODE = m_config_local.bitrate << RADIO_MODE_MODE_Pos;
    
        switch (m_config_local.bitrate)
        {
            case NRF_ESB_BITRATE_2MBPS:
    #ifdef NRF52
            case NRF_ESB_BITRATE_2MBPS_BLE:
    #endif
                m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS;
                break;
    
            case NRF_ESB_BITRATE_1MBPS:
                m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS;
                break;
    
    #ifdef NRF51
            case NRF_ESB_BITRATE_250KBPS:
                m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_250KBPS;
                break;
    #endif
            
            case NRF_ESB_BITRATE_1MBPS_BLE:
                m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS_BLE;
                break;
    
            default:
                // Should not be reached
                return false;
        }
        return true;
    }
    
    
    static bool update_radio_protocol()
    {
        switch (m_config_local.protocol)
        {
            case NRF_ESB_PROTOCOL_ESB_DPL:
                update_rf_payload_format = update_rf_payload_format_esb_dpl;
                break;
    
            case NRF_ESB_PROTOCOL_ESB:
                update_rf_payload_format = update_rf_payload_format_esb;
                break;
    
            default:
                // Should not be reached
                return false;
        }
        return true;
    }
    
    
    static bool update_radio_crc()
    {
        switch(m_config_local.crc)
        {
            case NRF_ESB_CRC_16BIT:
                NRF_RADIO->CRCINIT = 0xFFFFUL;      // Initial value
                NRF_RADIO->CRCPOLY = 0x11021UL;     // CRC poly: x^16+x^12^x^5+1
                break;
            
            case NRF_ESB_CRC_8BIT:
                NRF_RADIO->CRCINIT = 0xFFUL;        // Initial value
                NRF_RADIO->CRCPOLY = 0x107UL;       // CRC poly: x^8+x^2^x^1+1
                break;
            
            case NRF_ESB_CRC_OFF:
                break;
            
            default:
                return false;
        }
        NRF_RADIO->CRCCNF = m_config_local.crc << RADIO_CRCCNF_LEN_Pos;
        return true;
    }
    
    
    static bool update_radio_parameters()
    {
        bool params_valid = true;
        update_radio_tx_power();
        params_valid &= update_radio_bitrate();
        params_valid &= update_radio_protocol();
        params_valid &= update_radio_crc();
        update_rf_payload_format(m_config_local.payload_length);
        params_valid &= (m_config_local.retransmit_delay >= NRF_ESB_RETRANSMIT_DELAY_MIN);
        return params_valid;
    }
    
    
    static void reset_fifos()
    {
        m_tx_fifo.entry_point = 0;
        m_tx_fifo.exit_point  = 0;
        m_tx_fifo.count       = 0;
    
        m_rx_fifo.entry_point = 0;
        m_rx_fifo.exit_point  = 0;
        m_rx_fifo.count       = 0;
    }
    
    
    static void initialize_fifos()
    {
        reset_fifos();
    
        for (int i = 0; i < NRF_ESB_TX_FIFO_SIZE; i++)
        {
            m_tx_fifo.p_payload[i] = &m_tx_fifo_payload[i];
        }
    
        for (int i = 0; i < NRF_ESB_RX_FIFO_SIZE; i++)
        {
            m_rx_fifo.p_payload[i] = &m_rx_fifo_payload[i];
        }
    }
    
    
    static void tx_fifo_remove_last()
    {
        if (m_tx_fifo.count > 0)
        {
            DISABLE_RF_IRQ();
    
            m_tx_fifo.count--;
            if (++m_tx_fifo.exit_point >= NRF_ESB_TX_FIFO_SIZE)
            {
                m_tx_fifo.exit_point = 0;
            }
    
            ENABLE_RF_IRQ();
        }
    }
    
    /** @brief  Function to push the content of the rx_buffer to the RX FIFO.
     *
     *  The module will point the register NRF_RADIO->PACKETPTR to a buffer for receiving packets.
     *  After receiving a packet the module will call this function to copy the received data to
     *  the RX FIFO.
     *
     *  @param  pipe Pipe number to set for the packet.
     *  @param  pid  Packet ID.
     *
     *  @retval true   Operation successful.
     *  @retval false  Operation failed.
     */
    static bool rx_fifo_push_rfbuf(uint8_t pipe, uint8_t pid)
    {
        if (m_rx_fifo.count < NRF_ESB_RX_FIFO_SIZE)
        {
            if (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB_DPL)
            {
                if (m_rx_payload_buffer[1] > NRF_ESB_MAX_PAYLOAD_LENGTH) //Moved 1 byte. Changed from 0 to 1.
                {
                    return false;
                }
    
                m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = m_rx_payload_buffer[1]; //Length is moved 1 byte because of S0. Changed from 0 to 1
            }
            else if (m_config_local.mode == NRF_ESB_MODE_PTX)
            {
                // Received packet is an acknowledgment
                m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = 0;
            }
            else
            {
                m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = m_config_local.payload_length;
            }
    
            memcpy(m_rx_fifo.p_payload[m_rx_fifo.entry_point]->data, &m_rx_payload_buffer[3], //Moved 1 byte. Changed from 2 to 3.
                   m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length);
    
            m_rx_fifo.p_payload[m_rx_fifo.entry_point]->pipe  = pipe;
            m_rx_fifo.p_payload[m_rx_fifo.entry_point]->rssi  = NRF_RADIO->RSSISAMPLE;
            m_rx_fifo.p_payload[m_rx_fifo.entry_point]->pid   = pid;
            m_rx_fifo.p_payload[m_rx_fifo.entry_point]->noack = !(m_rx_payload_buffer[2] & 0x01);  //moved 1 byte. Changed from 1 to 2.
            if (++m_rx_fifo.entry_point >= NRF_ESB_RX_FIFO_SIZE)
            {
                m_rx_fifo.entry_point = 0;
            }
            m_rx_fifo.count++;
    
            return true;
        }
    
        return false;
    }
    
    
    static void sys_timer_init()
    {
        // Configure the system timer with a 1 MHz base frequency
        NRF_ESB_SYS_TIMER->PRESCALER = 4;
        NRF_ESB_SYS_TIMER->BITMODE   = TIMER_BITMODE_BITMODE_16Bit;
        NRF_ESB_SYS_TIMER->SHORTS    = TIMER_SHORTS_COMPARE1_CLEAR_Msk | TIMER_SHORTS_COMPARE1_STOP_Msk;
    }
    
    
    static void ppi_init()
    {
        NRF_PPI->CH[NRF_ESB_PPI_TIMER_START].EEP = (uint32_t)&NRF_RADIO->EVENTS_READY;
        NRF_PPI->CH[NRF_ESB_PPI_TIMER_START].TEP = (uint32_t)&NRF_ESB_SYS_TIMER->TASKS_START;
    
        NRF_PPI->CH[NRF_ESB_PPI_TIMER_STOP].EEP  = (uint32_t)&NRF_RADIO->EVENTS_ADDRESS;
        NRF_PPI->CH[NRF_ESB_PPI_TIMER_STOP].TEP  = (uint32_t)&NRF_ESB_SYS_TIMER->TASKS_STOP;
    
        NRF_PPI->CH[NRF_ESB_PPI_RX_TIMEOUT].EEP  = (uint32_t)&NRF_ESB_SYS_TIMER->EVENTS_COMPARE[0];
        NRF_PPI->CH[NRF_ESB_PPI_RX_TIMEOUT].TEP  = (uint32_t)&NRF_RADIO->TASKS_DISABLE;
    
        NRF_PPI->CH[NRF_ESB_PPI_TX_START].EEP    = (uint32_t)&NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1];
        NRF_PPI->CH[NRF_ESB_PPI_TX_START].TEP    = (uint32_t)&NRF_RADIO->TASKS_TXEN;
    }
    
    
    static void start_tx_transaction()
    {
        bool ack;
    
        m_last_tx_attempts = 1;
        // Prepare the payload
        mp_current_payload = m_tx_fifo.p_payload[m_tx_fifo.exit_point];
    
    
        switch (m_config_local.protocol)
        {
            case NRF_ESB_PROTOCOL_ESB: //We are using ESB_DPL. No changes done here.
                update_rf_payload_format(mp_current_payload->length);
                m_tx_payload_buffer[0] = mp_current_payload->pid;
                m_tx_payload_buffer[1] = 0;
                memcpy(&m_tx_payload_buffer[2], mp_current_payload->data, mp_current_payload->length);
    
                NRF_RADIO->SHORTS   = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
                NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
    
                // Configure the retransmit counter
                m_retransmits_remaining = m_config_local.retransmit_count;
                on_radio_disabled = on_radio_disabled_tx;
                m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
                break;
    
            case NRF_ESB_PROTOCOL_ESB_DPL:
                ack = !mp_current_payload->noack || !m_config_local.selective_auto_ack;
    	    m_tx_payload_buffer[0] = S0BYTE; //setting s0 as first byte in packet.
                m_tx_payload_buffer[1] = mp_current_payload->length; //Length has been moved 1 byte. Changed from 0 to 1.
                m_tx_payload_buffer[2] = mp_current_payload->pid << 1;  //Moved 1 byte. Changed from 1 to 2.
                m_tx_payload_buffer[2] |= mp_current_payload->noack ? 0x00 : 0x01; //Moved 1 byte. Changed from 1 to 2.
                memcpy(&m_tx_payload_buffer[3], mp_current_payload->data, mp_current_payload->length); //Moved 1 byte. Changed from 2 to 3.
    
                // Handling ack if noack is set to false or if selective auto ack is turned off
                if (ack)
                {
                    NRF_RADIO->SHORTS   = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
                    NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
    
                    // Configure the retransmit counter
                    m_retransmits_remaining = m_config_local.retransmit_count;
                    on_radio_disabled = on_radio_disabled_tx;
                    m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
                }
                else
                {
                    NRF_RADIO->SHORTS   = m_radio_shorts_common;
                    NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
                    on_radio_disabled   = on_radio_disabled_tx_noack;
                    m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX;
                }
                break;
    
            default:
                // Should not be reached
                break;
        }
    
        NRF_RADIO->TXADDRESS    = mp_current_payload->pipe;
        NRF_RADIO->RXADDRESSES  = 1 << mp_current_payload->pipe;
    
        NRF_RADIO->FREQUENCY    = m_esb_addr.rf_channel;
        NRF_RADIO->PACKETPTR    = (uint32_t)m_tx_payload_buffer;
    
        NVIC_ClearPendingIRQ(RADIO_IRQn);
        NVIC_EnableIRQ(RADIO_IRQn);
    
        NRF_RADIO->EVENTS_ADDRESS = 0;
        NRF_RADIO->EVENTS_PAYLOAD = 0;
        NRF_RADIO->EVENTS_DISABLED = 0;
    
        DEBUG_PIN_SET(DEBUGPIN4);
        NRF_RADIO->TASKS_TXEN  = 1;
    }
    
    
    static void on_radio_disabled_tx_noack()
    {
        m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
        tx_fifo_remove_last();
    
        if (m_tx_fifo.count == 0)
        {
            m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
            NVIC_SetPendingIRQ(ESB_EVT_IRQ);
        }
        else
        {
            NVIC_SetPendingIRQ(ESB_EVT_IRQ);
            start_tx_transaction();
        }
    }
    
    
    static void on_radio_disabled_tx()
    {
        // Remove the DISABLED -> RXEN shortcut, to make sure the radio stays
        // disabled after the RX window
        NRF_RADIO->SHORTS           = m_radio_shorts_common;
    
        // Make sure the timer is started the next time the radio is ready,
        // and that it will disable the radio automatically if no packet is
        // received by the time defined in m_wait_for_ack_timeout_us
        NRF_ESB_SYS_TIMER->CC[0]    = m_wait_for_ack_timeout_us;
        NRF_ESB_SYS_TIMER->CC[1]    = m_config_local.retransmit_delay - 130;
        NRF_ESB_SYS_TIMER->TASKS_CLEAR = 1;
        NRF_ESB_SYS_TIMER->EVENTS_COMPARE[0] = 0;
        NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1] = 0;
    
        NRF_PPI->CHENSET            = (1 << NRF_ESB_PPI_TIMER_START) |
                                      (1 << NRF_ESB_PPI_RX_TIMEOUT) |
                                      (1 << NRF_ESB_PPI_TIMER_STOP);
        NRF_PPI->CHENCLR            = (1 << NRF_ESB_PPI_TX_START);
        NRF_RADIO->EVENTS_END       = 0;
    
        if (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB)
        {
            update_rf_payload_format(0);
        }
    
        NRF_RADIO->PACKETPTR        = (uint32_t)m_rx_payload_buffer;
        on_radio_disabled           = on_radio_disabled_tx_wait_for_ack;
        m_nrf_esb_mainstate         = NRF_ESB_STATE_PTX_RX_ACK;
    }
    
    
    static void on_radio_disabled_tx_wait_for_ack()
    {
        // This marks the completion of a TX_RX sequence (TX with ACK)
    
        // Make sure the timer will not deactivate the radio if a packet is received
        NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
                           (1 << NRF_ESB_PPI_RX_TIMEOUT)  |
                           (1 << NRF_ESB_PPI_TIMER_STOP);
    
        // If the radio has received a packet and the CRC status is OK
        if (NRF_RADIO->EVENTS_END && NRF_RADIO->CRCSTATUS != 0)
        {
            NRF_ESB_SYS_TIMER->TASKS_STOP = 1;
            NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
            m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
            m_last_tx_attempts = m_config_local.retransmit_count - m_retransmits_remaining + 1;
    
            tx_fifo_remove_last();
    
            if (m_config_local.protocol != NRF_ESB_PROTOCOL_ESB && m_rx_payload_buffer[0] > 0)
            {
                if (rx_fifo_push_rfbuf((uint8_t)NRF_RADIO->TXADDRESS, m_rx_payload_buffer[1] >> 1))
                {
                    m_interrupt_flags |= NRF_ESB_INT_RX_DATA_RECEIVED_MSK;
                }
            }
    
            if ((m_tx_fifo.count == 0) || (m_config_local.tx_mode == NRF_ESB_TXMODE_MANUAL))
            {
                m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
                NVIC_SetPendingIRQ(ESB_EVT_IRQ);
            }
            else
            {
                NVIC_SetPendingIRQ(ESB_EVT_IRQ);
                start_tx_transaction();
            }
        }
        else
        {
            if (m_retransmits_remaining-- == 0)
            {
                NRF_ESB_SYS_TIMER->TASKS_STOP = 1;
                NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
                // All retransmits are expended, and the TX operation is suspended
                m_last_tx_attempts = m_config_local.retransmit_count + 1;
                m_interrupt_flags |= NRF_ESB_INT_TX_FAILED_MSK;
    
                m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
                NVIC_SetPendingIRQ(ESB_EVT_IRQ);
            }
            else
            {
                // There are still more retransmits left, TX mode should be
                // entered again as soon as the system timer reaches CC[1].
                NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
                update_rf_payload_format(mp_current_payload->length);
                NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
                on_radio_disabled = on_radio_disabled_tx;
                m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
                NRF_ESB_SYS_TIMER->TASKS_START = 1;
                NRF_PPI->CHENSET = (1 << NRF_ESB_PPI_TX_START);
                if (NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1])
                {
                    NRF_RADIO->TASKS_TXEN = 1;
                }
            }
        }
    }
    
    static void clear_events_restart_rx(void)
    {
        NRF_RADIO->SHORTS = m_radio_shorts_common;
        update_rf_payload_format(m_config_local.payload_length);
        NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
        NRF_RADIO->EVENTS_DISABLED = 0;
        NRF_RADIO->TASKS_DISABLE = 1;
    
        while (NRF_RADIO->EVENTS_DISABLED == 0);
    
        NRF_RADIO->EVENTS_DISABLED = 0;
        NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
    
        NRF_RADIO->TASKS_RXEN = 1;
    }
    
    static void on_radio_disabled_rx(void)
    {
        bool            ack                = false;
        bool            retransmit_payload = false;
        bool            send_rx_event      = true;
        pipe_info_t *   p_pipe_info;
    
        if (NRF_RADIO->CRCSTATUS == 0)
        {
            clear_events_restart_rx();
            return;
        }
    
        if (m_rx_fifo.count >= NRF_ESB_RX_FIFO_SIZE)
        {
            clear_events_restart_rx();
            return;
        }
    
        p_pipe_info = &m_rx_pipe_info[NRF_RADIO->RXMATCH];
        if (NRF_RADIO->RXCRC             == p_pipe_info->crc &&
            (m_rx_payload_buffer[2] >> 1) == p_pipe_info->pid   //Moved 1 byte. Changed from 1 to 2.
           )
        {
            retransmit_payload = true;
            send_rx_event = false;
        }
    
        p_pipe_info->pid = m_rx_payload_buffer[2] >> 1;  //Moved 1 byte. Changed from 1 to 2.
        p_pipe_info->crc = NRF_RADIO->RXCRC;
    
        if ((m_config_local.selective_auto_ack == false) || ((m_rx_payload_buffer[2] & 0x01) == 1)) //Moved 1 byte. Changed from 1 to 2.
        {
            ack = true;
        }
    
        if (ack)
        {
            NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
    
            switch (m_config_local.protocol)
            {
                case NRF_ESB_PROTOCOL_ESB_DPL:
                    {
                        if (m_tx_fifo.count > 0 &&
                            (m_tx_fifo.p_payload[m_tx_fifo.exit_point]->pipe == NRF_RADIO->RXMATCH)
                           )
                        {
                            // Pipe stays in ACK with payload until TX FIFO is empty
                            // Do not report TX success on first ack payload or retransmit
                            if (p_pipe_info->ack_payload == true && !retransmit_payload)
                            {
                                if (++m_tx_fifo.exit_point >= NRF_ESB_TX_FIFO_SIZE)
                                {
                                    m_tx_fifo.exit_point = 0;
                                }
    
                                m_tx_fifo.count--;
    
                                // ACK payloads also require TX_DS
                                // (page 40 of the 'nRF24LE1_Product_Specification_rev1_6.pdf').
                                m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
                            }
    
                            p_pipe_info->ack_payload = true;
    
                            mp_current_payload = m_tx_fifo.p_payload[m_tx_fifo.exit_point];
    
                            update_rf_payload_format(mp_current_payload->length);
    						m_tx_payload_buffer[0] = S0BYTE; // Setting to S0BYTE
                            m_tx_payload_buffer[1] = mp_current_payload->length;   //Moved 1 byte. Changed from 0 to 1.
                            memcpy(&m_tx_payload_buffer[3],   //Moved 1 byte. Changed from 2 to 3.
                                   mp_current_payload->data,
                                   mp_current_payload->length);
                        }
                        else
                        {
                            p_pipe_info->ack_payload = false;
                            update_rf_payload_format(0);
    						m_tx_payload_buffer[0] = S0BYTE; // Setting to S0BYTE
                            m_tx_payload_buffer[1] = 0; //Moved 1 byte. Changed from 0 to 1.
                        }
    
                        m_tx_payload_buffer[2] = m_rx_payload_buffer[2]; //Moved 1 byte. Changed from 1 to 2.
                    }
                    break;
    
                case NRF_ESB_PROTOCOL_ESB: //Using DPL. No changes
                    {
                        update_rf_payload_format(0);
                        m_tx_payload_buffer[0] = m_rx_payload_buffer[0];
                        m_tx_payload_buffer[1] = 0;
                    }
                    break;
            }
    
            m_nrf_esb_mainstate = NRF_ESB_STATE_PRX_SEND_ACK;
            NRF_RADIO->TXADDRESS = NRF_RADIO->RXMATCH;
            NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
            on_radio_disabled = on_radio_disabled_rx_ack;
        }
        else
        {
            clear_events_restart_rx();
        }
    
        if (send_rx_event)
        {
            // Push the new packet to the RX buffer and trigger a received event if the operation was
            // successful.
            if (rx_fifo_push_rfbuf(NRF_RADIO->RXMATCH, p_pipe_info->pid))
            {
                m_interrupt_flags |= NRF_ESB_INT_RX_DATA_RECEIVED_MSK;
                NVIC_SetPendingIRQ(ESB_EVT_IRQ);
            }
        }
    }
    
    
    static void on_radio_disabled_rx_ack(void)
    {
        NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
        update_rf_payload_format(m_config_local.payload_length);
    
        NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
        on_radio_disabled = on_radio_disabled_rx;
    
        m_nrf_esb_mainstate = NRF_ESB_STATE_PRX;
    }
    
    
    /**@brief Function for clearing pending interrupts.
     *
     * @param[in,out]   p_interrupts        Pointer to the value that holds the current interrupts.
     *
     * @retval  NRF_SUCCESS                     If the interrupts were cleared successfully.
     * @retval  NRF_ERROR_NULL                  If the required parameter was NULL.
     * @retval  NRF_INVALID_STATE               If the module is not initialized.
     */
    static uint32_t nrf_esb_get_clear_interrupts(uint32_t * p_interrupts)
    {
        VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
        VERIFY_PARAM_NOT_NULL(p_interrupts);
    
        DISABLE_RF_IRQ();
    
        *p_interrupts = m_interrupt_flags;
        m_interrupt_flags = 0;
    
        ENABLE_RF_IRQ();
    
        return NRF_SUCCESS;
    }
    
    
    void RADIO_IRQHandler()
    {
        if (NRF_RADIO->EVENTS_READY && (NRF_RADIO->INTENSET & RADIO_INTENSET_READY_Msk))
        {
            NRF_RADIO->EVENTS_READY = 0;
            DEBUG_PIN_SET(DEBUGPIN1);
        }
    
        if (NRF_RADIO->EVENTS_END && (NRF_RADIO->INTENSET & RADIO_INTENSET_END_Msk))
        {
            NRF_RADIO->EVENTS_END = 0;
            DEBUG_PIN_SET(DEBUGPIN2);
    
            // Call the correct on_radio_end function, depending on the current protocol state
            if (on_radio_end)
            {
                on_radio_end();
            }
        }
    
        if (NRF_RADIO->EVENTS_DISABLED && (NRF_RADIO->INTENSET & RADIO_INTENSET_DISABLED_Msk))
        {
            NRF_RADIO->EVENTS_DISABLED = 0;
            DEBUG_PIN_SET(DEBUGPIN3);
    
            // Call the correct on_radio_disable function, depending on the current protocol state
            if (on_radio_disabled)
            {
                on_radio_disabled();
            }
        }
    
        DEBUG_PIN_CLR(DEBUGPIN1);
        DEBUG_PIN_CLR(DEBUGPIN2);
        DEBUG_PIN_CLR(DEBUGPIN3);
        DEBUG_PIN_CLR(DEBUGPIN4);
    }
    
    
    uint32_t nrf_esb_init(nrf_esb_config_t const * p_config)
    {
        uint32_t err_code;
    
        VERIFY_PARAM_NOT_NULL(p_config);
    
        if (m_esb_initialized)
        {
            err_code = nrf_esb_disable();
            if (err_code != NRF_SUCCESS)
            {
                return err_code;
            }
        }
    
        m_event_handler = p_config->event_handler;
    
        memcpy(&m_config_local, p_config, sizeof(nrf_esb_config_t));
        
        m_interrupt_flags    = 0;
    
        memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
        memset(m_pids, 0, sizeof(m_pids));
    
        VERIFY_TRUE(update_radio_parameters(), NRF_ERROR_INVALID_PARAM);
    
        // Configure radio address registers according to ESB default values
        NRF_RADIO->BASE0   = 0xE7E7E7E7;
        NRF_RADIO->BASE1   = 0x43434343;
        NRF_RADIO->PREFIX0 = 0x23C343E7;
        NRF_RADIO->PREFIX1 = 0x13E363A3;
        
        initialize_fifos();
    
        sys_timer_init();
    
        ppi_init();
    
        NVIC_SetPriority(RADIO_IRQn, m_config_local.radio_irq_priority & ESB_IRQ_PRIORITY_MSK);
        NVIC_SetPriority(ESB_EVT_IRQ, m_config_local.event_irq_priority & ESB_IRQ_PRIORITY_MSK);
        NVIC_EnableIRQ(ESB_EVT_IRQ);
    
    #ifdef NRF52
        if(m_address_hang_fix_enable)
        {
            // Setup a timeout timer to start on an ADDRESS match, and stop on a BCMATCH event.
            // If the BCMATCH event never occurs the CC[0] event will fire, and the timer interrupt will disable the radio to recover.
            m_radio_shorts_common |= RADIO_SHORTS_ADDRESS_BCSTART_Msk;
            NRF_RADIO->BCC = 2;
            NRF_ESB_BUGFIX_TIMER->BITMODE = TIMER_BITMODE_BITMODE_32Bit << TIMER_BITMODE_BITMODE_Pos;
            NRF_ESB_BUGFIX_TIMER->PRESCALER = 4;
            NRF_ESB_BUGFIX_TIMER->CC[0] = 5;
            NRF_ESB_BUGFIX_TIMER->SHORTS = TIMER_SHORTS_COMPARE0_STOP_Msk | TIMER_SHORTS_COMPARE0_CLEAR_Msk;
            NRF_ESB_BUGFIX_TIMER->MODE = TIMER_MODE_MODE_Timer << TIMER_MODE_MODE_Pos;
            NRF_ESB_BUGFIX_TIMER->INTENSET = TIMER_INTENSET_COMPARE0_Msk;
            NRF_ESB_BUGFIX_TIMER->TASKS_CLEAR = 1;
            NVIC_SetPriority(NRF_ESB_BUGFIX_TIMER_IRQn, 5);
            NVIC_EnableIRQ(NRF_ESB_BUGFIX_TIMER_IRQn);
    
            NRF_PPI->CH[NRF_ESB_PPI_BUGFIX1].EEP = (uint32_t)&NRF_RADIO->EVENTS_ADDRESS;
            NRF_PPI->CH[NRF_ESB_PPI_BUGFIX1].TEP = (uint32_t)&NRF_ESB_BUGFIX_TIMER->TASKS_START;
    
            NRF_PPI->CH[NRF_ESB_PPI_BUGFIX2].EEP = (uint32_t)&NRF_RADIO->EVENTS_BCMATCH;
            NRF_PPI->CH[NRF_ESB_PPI_BUGFIX2].TEP = (uint32_t)&NRF_ESB_BUGFIX_TIMER->TASKS_STOP;
    
            NRF_PPI->CH[NRF_ESB_PPI_BUGFIX3].EEP = (uint32_t)&NRF_RADIO->EVENTS_BCMATCH;
            NRF_PPI->CH[NRF_ESB_PPI_BUGFIX3].TEP = (uint32_t)&NRF_ESB_BUGFIX_TIMER->TASKS_CLEAR;
    
            NRF_PPI->CHENSET = (1 << NRF_ESB_PPI_BUGFIX1) | (1 << NRF_ESB_PPI_BUGFIX2) | (1 << NRF_ESB_PPI_BUGFIX3);
        }
    #endif
    
        m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
        m_esb_initialized = true;
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_suspend(void)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
    
        // Clear PPI
        NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
                           (1 << NRF_ESB_PPI_TIMER_STOP)  |
                           (1 << NRF_ESB_PPI_RX_TIMEOUT)  |
                           (1 << NRF_ESB_PPI_TX_START);
    
        m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_disable(void)
    {
        // Clear PPI
        NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
                           (1 << NRF_ESB_PPI_TIMER_STOP)  |
                           (1 << NRF_ESB_PPI_RX_TIMEOUT)  |
                           (1 << NRF_ESB_PPI_TX_START);
    
        m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
    
        reset_fifos();
    
        memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
        memset(m_pids, 0, sizeof(m_pids));
    
        // Disable the radio
        NVIC_DisableIRQ(ESB_EVT_IRQ);
        NRF_RADIO->SHORTS = RADIO_SHORTS_READY_START_Enabled << RADIO_SHORTS_READY_START_Pos |
                            RADIO_SHORTS_END_DISABLE_Enabled << RADIO_SHORTS_END_DISABLE_Pos;
    
        return NRF_SUCCESS;
    }
    
    
    bool nrf_esb_is_idle(void)
    {
        return m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE;
    }
    
    
    void ESB_EVT_IRQHandler(void)
    {
        ret_code_t      err_code;
        uint32_t        interrupts;
        nrf_esb_evt_t   event;
    
        event.tx_attempts = m_last_tx_attempts;
    
        err_code = nrf_esb_get_clear_interrupts(&interrupts);
        if (err_code == NRF_SUCCESS && m_event_handler != 0)
        {
            if (interrupts & NRF_ESB_INT_TX_SUCCESS_MSK)
            {
                event.evt_id = NRF_ESB_EVENT_TX_SUCCESS;
                m_event_handler(&event);
            }
            if (interrupts & NRF_ESB_INT_TX_FAILED_MSK)
            {
                event.evt_id = NRF_ESB_EVENT_TX_FAILED;
                m_event_handler(&event);
            }
            if (interrupts & NRF_ESB_INT_RX_DATA_RECEIVED_MSK)
            {
                event.evt_id = NRF_ESB_EVENT_RX_RECEIVED;
                m_event_handler(&event);
            }
        }
    }
    
    uint32_t nrf_esb_write_payload(nrf_esb_payload_t const * p_payload)
    {
        VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
        VERIFY_PARAM_NOT_NULL(p_payload);
        VERIFY_PAYLOAD_LENGTH(p_payload);
        VERIFY_FALSE(m_tx_fifo.count >= NRF_ESB_TX_FIFO_SIZE, NRF_ERROR_NO_MEM);
        VERIFY_TRUE(p_payload->pipe < NRF_ESB_PIPE_COUNT, NRF_ERROR_INVALID_PARAM);
    
        DISABLE_RF_IRQ();
    
        memcpy(m_tx_fifo.p_payload[m_tx_fifo.entry_point], p_payload, sizeof(nrf_esb_payload_t));
    
        m_pids[p_payload->pipe] = (m_pids[p_payload->pipe] + 1) % (NRF_ESB_PID_MAX + 1);
        m_tx_fifo.p_payload[m_tx_fifo.entry_point]->pid = m_pids[p_payload->pipe];
    
        if (++m_tx_fifo.entry_point >= NRF_ESB_TX_FIFO_SIZE)
        {
            m_tx_fifo.entry_point = 0;
        }
    
        m_tx_fifo.count++;
    
        ENABLE_RF_IRQ();
    
    
        if (m_config_local.mode == NRF_ESB_MODE_PTX &&
            m_config_local.tx_mode == NRF_ESB_TXMODE_AUTO &&
            m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE)
        {
            start_tx_transaction();
        }
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_read_rx_payload(nrf_esb_payload_t * p_payload)
    {
        VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
        VERIFY_PARAM_NOT_NULL(p_payload);
    
        if (m_rx_fifo.count == 0)
        {
            return NRF_ERROR_NOT_FOUND;
        }
    
        DISABLE_RF_IRQ();
    
        p_payload->length = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->length;
        p_payload->pipe   = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->pipe;
        p_payload->rssi   = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->rssi;
        p_payload->pid    = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->pid;
        p_payload->noack  = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->noack; 
        memcpy(p_payload->data, m_rx_fifo.p_payload[m_rx_fifo.exit_point]->data, p_payload->length);
    
        if (++m_rx_fifo.exit_point >= NRF_ESB_RX_FIFO_SIZE)
        {
            m_rx_fifo.exit_point = 0;
        }
    
        m_rx_fifo.count--;
    
        ENABLE_RF_IRQ();
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_start_tx(void)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
    
        if (m_tx_fifo.count == 0)
        {
            return NRF_ERROR_BUFFER_EMPTY;
        }
    
        start_tx_transaction();
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_start_rx(void)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
    
        NRF_RADIO->INTENCLR = 0xFFFFFFFF;
        NRF_RADIO->EVENTS_DISABLED = 0;
        on_radio_disabled = on_radio_disabled_rx;
    
        NRF_RADIO->SHORTS      = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
        NRF_RADIO->INTENSET    = RADIO_INTENSET_DISABLED_Msk;
        m_nrf_esb_mainstate    = NRF_ESB_STATE_PRX;
    
        NRF_RADIO->RXADDRESSES  = m_esb_addr.rx_pipes_enabled;
        NRF_RADIO->FREQUENCY    = m_esb_addr.rf_channel;
        NRF_RADIO->PACKETPTR    = (uint32_t)m_rx_payload_buffer;
    
        NVIC_ClearPendingIRQ(RADIO_IRQn);
        NVIC_EnableIRQ(RADIO_IRQn);
    
        NRF_RADIO->EVENTS_ADDRESS = 0;
        NRF_RADIO->EVENTS_PAYLOAD = 0;
        NRF_RADIO->EVENTS_DISABLED = 0;
    
        NRF_RADIO->TASKS_RXEN  = 1;
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_stop_rx(void)
    {
        if (m_nrf_esb_mainstate == NRF_ESB_STATE_PRX)
        {
            NRF_RADIO->SHORTS = 0;
            NRF_RADIO->INTENCLR = 0xFFFFFFFF;
            on_radio_disabled = NULL;
            NRF_RADIO->EVENTS_DISABLED = 0;
            NRF_RADIO->TASKS_DISABLE = 1;
            while (NRF_RADIO->EVENTS_DISABLED == 0);
            m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
    
            return NRF_SUCCESS;
        }
    
        return NRF_ESB_ERROR_NOT_IN_RX_MODE;
    }
    
    
    uint32_t nrf_esb_flush_tx(void)
    {
        VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
    
        DISABLE_RF_IRQ();
    
        m_tx_fifo.count = 0;
        m_tx_fifo.entry_point = 0;
        m_tx_fifo.exit_point = 0;
    
        ENABLE_RF_IRQ();
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_pop_tx(void)
    {
        VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
        VERIFY_TRUE(m_tx_fifo.count > 0, NRF_ERROR_BUFFER_EMPTY);
    
        DISABLE_RF_IRQ();
    
        if (++m_tx_fifo.entry_point >= NRF_ESB_TX_FIFO_SIZE)
        {
            m_tx_fifo.entry_point = 0;
        }
        m_tx_fifo.count--;
    
        ENABLE_RF_IRQ();
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_flush_rx(void)
    {
        VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
    
        DISABLE_RF_IRQ();
    
        m_rx_fifo.count = 0;
        m_rx_fifo.entry_point = 0;
        m_rx_fifo.exit_point = 0;
    
        memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
    
        ENABLE_RF_IRQ();
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_set_address_length(uint8_t length)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_TRUE(length > 2 && length < 6, NRF_ERROR_INVALID_PARAM);
        
        /* 
        Workaround for nRF52832 Rev 1 Errata 107
        Check if pipe 0 or pipe 1-7 has a 'zero address'.
        Avoid using access addresses in the following pattern (where X is don't care): 
        ADDRLEN=5 
        BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX 
    
        ADDRLEN=4 
        BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
        */
        uint32_t base_address_mask = length == 5 ? 0xFFFF0000 : 0xFF000000;
        if((NRF_RADIO->BASE0 & base_address_mask) == 0 && (NRF_RADIO->PREFIX0 & 0x000000FF) == 0)
        {
            return NRF_ERROR_INVALID_PARAM;
        }
        if((NRF_RADIO->BASE1 & base_address_mask) == 0 && ((NRF_RADIO->PREFIX0 & 0x0000FF00) == 0 ||(NRF_RADIO->PREFIX0 & 0x00FF0000) == 0 || (NRF_RADIO->PREFIX0 & 0xFF000000) == 0 ||
           (NRF_RADIO->PREFIX1 & 0xFF000000) == 0 || (NRF_RADIO->PREFIX1 & 0x00FF0000) == 0 ||(NRF_RADIO->PREFIX1 & 0x0000FF00) == 0 || (NRF_RADIO->PREFIX1 & 0x000000FF) == 0))
        {
            return NRF_ERROR_INVALID_PARAM;
        }
        
        m_esb_addr.addr_length = length;
    
        update_rf_payload_format(m_config_local.payload_length);
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_set_base_address_0(uint8_t const * p_addr)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_PARAM_NOT_NULL(p_addr);
        
        /*
        Workaround for nRF52832 Rev 1 Errata 107
        Check if pipe 0 or pipe 1-7 has a 'zero address'.
        Avoid using access addresses in the following pattern (where X is don't care): 
        ADDRLEN=5 
        BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX 
    
        ADDRLEN=4 
        BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
        */
        uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
        if((addr_conv(p_addr) & base_address_mask) == 0 && (NRF_RADIO->PREFIX0 & 0x000000FF) == 0)
        {
            return NRF_ERROR_INVALID_PARAM;
        }
    
        memcpy(m_esb_addr.base_addr_p0, p_addr, 4);
    
        update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_BASE0);
    
        return apply_address_workarounds();
    }
    
    
    uint32_t nrf_esb_set_base_address_1(uint8_t const * p_addr)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_PARAM_NOT_NULL(p_addr);
        
        /*
        Workaround for nRF52832 Rev 1 Errata 107
        Check if pipe 0 or pipe 1-7 has a 'zero address'.
        Avoid using access addresses in the following pattern (where X is don't care): 
        ADDRLEN=5 
        BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX 
    
        ADDRLEN=4 
        BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
        */
        uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
        if((addr_conv(p_addr) & base_address_mask) == 0 && ((NRF_RADIO->PREFIX0 & 0x0000FF00) == 0 ||(NRF_RADIO->PREFIX0 & 0x00FF0000) == 0 || (NRF_RADIO->PREFIX0 & 0xFF000000) == 0 ||
           (NRF_RADIO->PREFIX1 & 0xFF000000) == 0 || (NRF_RADIO->PREFIX1 & 0x00FF0000) == 0 ||(NRF_RADIO->PREFIX1 & 0x0000FF00) == 0 || (NRF_RADIO->PREFIX1 & 0x000000FF) == 0))
        {
            return NRF_ERROR_INVALID_PARAM;
        }
        
        memcpy(m_esb_addr.base_addr_p1, p_addr, 4);
    
        update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_BASE1);
    
        return apply_address_workarounds();
    }
    
    
    uint32_t nrf_esb_set_prefixes(uint8_t const * p_prefixes, uint8_t num_pipes)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_PARAM_NOT_NULL(p_prefixes);
        VERIFY_TRUE(num_pipes < 9, NRF_ERROR_INVALID_PARAM);
        
        /*
        Workaround for nRF52832 Rev 1 Errata 107
        Check if pipe 0 or pipe 1-7 has a 'zero address'.
        Avoid using access addresses in the following pattern (where X is don't care): 
        ADDRLEN=5 
        BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX 
    
        ADDRLEN=4 
        BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
        */
        uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
        if(num_pipes >= 1 && (NRF_RADIO->BASE0 & base_address_mask) == 0 && p_prefixes[0] == 0)
        {
            return NRF_ERROR_INVALID_PARAM;
        }
    
        if((NRF_RADIO->BASE1 & base_address_mask) == 0)
        {
            for (uint8_t i = 1; i < num_pipes; i++)
            {
                if (p_prefixes[i] == 0)
                {
                    return NRF_ERROR_INVALID_PARAM;
                }
            }
        }
        
        memcpy(m_esb_addr.pipe_prefixes, p_prefixes, num_pipes);
        m_esb_addr.num_pipes = num_pipes;
        m_esb_addr.rx_pipes_enabled = BIT_MASK_UINT_8(num_pipes);
    
        update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_PREFIX);
    
        return apply_address_workarounds();
    }
    
    
    uint32_t nrf_esb_update_prefix(uint8_t pipe, uint8_t prefix)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_TRUE(pipe < 8, NRF_ERROR_INVALID_PARAM);
        
        /*
        Workaround for nRF52832 Rev 1 Errata 107
        Check if pipe 0 or pipe 1-7 has a 'zero address'.
        Avoid using access addresses in the following pattern (where X is don't care): 
        ADDRLEN=5 
        BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX 
    
        ADDRLEN=4 
        BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX 
        BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
        */
        uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
        if (pipe == 0)
        {
            if((NRF_RADIO->BASE0 & base_address_mask) == 0 && prefix == 0)
            {
                return NRF_ERROR_INVALID_PARAM;
            }
        }
        else{
            if((NRF_RADIO->BASE1 & base_address_mask) == 0 && prefix == 0)
            {
                return NRF_ERROR_INVALID_PARAM;
            }
        }
        
        m_esb_addr.pipe_prefixes[pipe] = prefix;
    
        update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_PREFIX);
    
        return apply_address_workarounds();
    }
    
    
    uint32_t nrf_esb_enable_pipes(uint8_t enable_mask)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
    
        m_esb_addr.rx_pipes_enabled = enable_mask;
    
        return apply_address_workarounds();
    }
    
    
    uint32_t nrf_esb_set_rf_channel(uint32_t channel)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_TRUE(channel <= 100, NRF_ERROR_INVALID_PARAM);
    
        m_esb_addr.rf_channel = channel;
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_get_rf_channel(uint32_t * p_channel)
    {
        VERIFY_PARAM_NOT_NULL(p_channel);
    
        *p_channel = m_esb_addr.rf_channel;
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_set_tx_power(nrf_esb_tx_power_t tx_output_power)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
    
        if ( m_config_local.tx_output_power != tx_output_power )
        {
            m_config_local.tx_output_power = tx_output_power;
            update_radio_tx_power();
        }
    
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_set_retransmit_delay(uint16_t delay)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_TRUE(delay >= NRF_ESB_RETRANSMIT_DELAY_MIN, NRF_ERROR_INVALID_PARAM);
    
        m_config_local.retransmit_delay = delay;
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_set_retransmit_count(uint16_t count)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
    
        m_config_local.retransmit_count = count;
        return NRF_SUCCESS;
    }
    
    
    uint32_t nrf_esb_set_bitrate(nrf_esb_bitrate_t bitrate)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
    
        m_config_local.bitrate = bitrate;
        return update_radio_bitrate() ? NRF_SUCCESS : NRF_ERROR_INVALID_PARAM;
    }
    
    
    uint32_t nrf_esb_reuse_pid(uint8_t pipe)
    {
        VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
        VERIFY_TRUE(pipe < 8, NRF_ERROR_INVALID_PARAM);
    
        m_pids[pipe] = (m_pids[pipe] + NRF_ESB_PID_MAX) % (NRF_ESB_PID_MAX + 1);
        return NRF_SUCCESS;
    }
    
    
    // Handler for 
    #ifdef NRF52
    void NRF_ESB_BUGFIX_TIMER_IRQHandler(void)
    {
        if(NRF_ESB_BUGFIX_TIMER->EVENTS_COMPARE[0])
        {
            NRF_ESB_BUGFIX_TIMER->EVENTS_COMPARE[0] = 0;
    
            // If the timeout timer fires and we are in the PTX receive ACK state, disable the radio
            if(m_nrf_esb_mainstate == NRF_ESB_STATE_PTX_RX_ACK)
            {
                NRF_RADIO->TASKS_DISABLE = 1;
            }
        }
    }
    #endif

  • As mentioned the DACNF have only been intended to be used with BLE, and not tested in general for other purposes, so it can some configuration that BLE use that indirectly affect the issue you see. I am not sure if I have good suggestion here than to try various configuration to see how that impact the problem you experience, maybe try 1Mbps instead and possible also try to memory align the transmitted/recevied payload buffer to see if that affect the problem in any way, e.g. using __ALIGN(4) 

    Kenneth

Related