MISO line mimics the MOSI line in SPIM configuration sdk 17.1.0

Hi,

When I looked at the SPI lines using the oscilloscope, I saw that the MISO line had the same signal as the MOSI line. As you can see from the image, basically SPI configuration works properly. Before message transfer CS pin goes low, and after that, the MOSI line works. I can read message that I sent using the oscilloscope.

What can be the problem with the MISO line signal reflecting the MOSI line signal? The SPI config stage CPOL = 0, CPAH = 1, I am using a 2 MHz clock signal. Thanks for your help.

Parents
  • Schematic. Looks to me like MISO was never driven at all and is just floating. The voltage change results from coupling to MOSI and clock signal.

    MISO is supposed to be driven by the slave when CS=Low. Check that its properly connected. 

  • Sorry for the late response. All physical pins are connected properly, but I did not understand the problem. During the SPIM configuration, I just initialised the MISO pin. I am sharing my ADS1299 library code with you, Maybe the issue is about the software configuration of the SPIM. I checked the working mechanism of the SPI with ADS1299, and it looks like it was working properly. Again, thanks for your help.

     

    #include "ADS1299_nRF.h"
    #include <nrf.h>
    #include <nrf_log.h>
    #include <nrf_log_ctrl.h>
    #include <nrf_log_default_backends.h>
    #include <nrf_gpio.h>
    #include <nrf_delay.h>
    #include "ads1299_delay.h"
    
    // Enable polling mode for DRDY
    #define POLL_DREADY
    
    #define SPIM2 NRF_SPIM2
    
    bool new_data_available = false;
    uint8_t rx_buffer[27], tx_buffer[8];
    uint8_t sample_number = 0;
    static uint8_t regData[24]; // Mirror of ADS1299 registers
    
    
    /** @brief SPI interface initialization. Accurate timing use HFCLK clock */
    void spi_init(void) {
        // Start HFCLK source for accurate timing
        NRF_CLOCK->TASKS_HFCLKSTART = 1;
        while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0);
        NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
        
        // Disable SPIM to configure it
        SPIM2->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos);
    
        // Configure SPIM2 pins
        SPIM2->PSEL.SCK = PIN_SCK;
        SPIM2->PSEL.MOSI = PIN_MOSI;
        SPIM2->PSEL.MISO = PIN_MISO;
        
        SPIM2->FREQUENCY = SPIM_FREQUENCY_FREQUENCY_M2; // 2 MHz
    
        // ADS1299 set Data mode clock polarity = 0; clock_phase = 1
        SPIM2->CONFIG = (SPIM_CONFIG_CPOL_ActiveLow << SPIM_CONFIG_CPOL_Pos) |  // Fixed CPOL
                        (SPIM_CONFIG_CPHA_Trailing << SPIM_CONFIG_CPHA_Pos) |
                        (SPIM_CONFIG_ORDER_MsbFirst << SPIM_CONFIG_ORDER_Pos);
    
        SPIM2->EVENTS_END = 0;
        SPIM2->EVENTS_ENDTX = 0;
        SPIM2->EVENTS_ENDRX = 0;
        SPIM2->EVENTS_STOPPED = 0;
    
        SPIM2->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
        
    }
    
    static void spi_uninit(void) {
        SPIM2->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos);
        nrf_gpio_cfg_input(PIN_SCK, NRF_GPIO_PIN_NOPULL);
        nrf_gpio_cfg_input(PIN_MOSI, NRF_GPIO_PIN_NOPULL);
        nrf_gpio_cfg_input(PIN_MISO, NRF_GPIO_PIN_NOPULL);
    }
    
    //bool spi_transfer_byte(uint8_t tx, uint8_t *rx) {
    //    uint8_t local_rx = 0;
    //    if (!rx) rx = &local_rx;
    //    if (!(SPIM2->ENABLE & SPIM_ENABLE_ENABLE_Msk)) {
    //        SPIM2->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
    //    }
    //    SPIM2->TXD.PTR = (uint32_t)&tx;
    //    SPIM2->TXD.MAXCNT = 1;
    //    SPIM2->RXD.PTR = (uint32_t)rx;
    //    SPIM2->RXD.MAXCNT = 1;
    //    SPIM2->EVENTS_END = 0;
    //    SPIM2->TASKS_START = 1;
    
    //    nrf_delay_us(20);
    
    //    //uint32_t timeout = 10000;
    //    //while (!SPIM2->EVENTS_END && timeout--) {
    //    //    nrf_delay_us(1);
    //    //}
    //    //if (timeout == 0) {
    //    //    NRF_LOG_ERROR("SPI transfer timeout");
    //    //    return false;
    //    //}
    //    SPIM2->EVENTS_END = 0;
    //    NRF_LOG_INFO("SPI TX: 0x%02x, RX: 0x%02x", tx, *rx);
    //    return true;
    //}
    
    uint8_t spi_transfer_byte(uint8_t tx) {
        uint8_t rx;
        if (!(SPIM2->ENABLE & SPIM_ENABLE_ENABLE_Msk)) {
            SPIM2->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
        }
        SPIM2->TXD.PTR = (uint32_t)&tx;
        SPIM2->TXD.MAXCNT = 1;
        SPIM2->RXD.PTR = (uint32_t)&rx;
        SPIM2->RXD.MAXCNT = 1;
        SPIM2->EVENTS_END = 0;
        SPIM2->TASKS_START = 1;
        while (!SPIM2->EVENTS_END);
        SPIM2->EVENTS_END = 0;
        //SPIM2->TASKS_STOP = 1;
        NRF_LOG_INFO("SPI TX: 0x%02x, RX: 0x%02x", tx, rx);
        return rx;
    }
    
    bool spi_transfer_byte_v2(uint8_t tx, uint8_t *rx) {
        uint8_t local_rx = 0;
        if (!rx) rx = &local_rx;
        
        // Ensure SPIM2 is enabled (assumes prior configuration)
        if (!(SPIM2->ENABLE & SPIM_ENABLE_ENABLE_Msk)) {
            SPIM2->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
        }
        
        // Clear events before starting
        SPIM2->EVENTS_ENDTX = 0;
        SPIM2->EVENTS_ENDRX = 0;
        SPIM2->EVENTS_END = 0;
        
        // Configure buffers
        SPIM2->TXD.PTR = (uint32_t)&tx;
        SPIM2->TXD.MAXCNT = 1;
        SPIM2->RXD.PTR = (uint32_t)rx;
        SPIM2->RXD.MAXCNT = 1;
        
        // Start transaction
        SPIM2->TASKS_START = 1;
        
        // Wait for transaction to complete
        while (!SPIM2->EVENTS_END);
        
        // Clear events
        SPIM2->EVENTS_ENDTX = 0;
        SPIM2->EVENTS_ENDRX = 0;
        SPIM2->EVENTS_END = 0;
    
        NRF_LOG_INFO("SPI TX: 0x%02x, RX: 0x%02x", tx, *rx);
        return true;
    }
    
    bool ADS1299_init(void) {
        
        // recommended power up sequence for ADS1299
        delay_init();
        nrf_delay_ms(50);
        
        NRF_LOG_INFO("Initializing ADS1299");
        nrf_gpio_pin_clear(RESET_PIN);
        nrf_gpio_cfg_output(RESET_PIN);
        nrf_gpio_pin_clear(RESET_PIN);
        nrf_delay_us(4);
        nrf_gpio_pin_set(RESET_PIN);
        nrf_delay_us(20);
        
        //nrf_gpio_cfg_output(PIN_SCK);
        //nrf_gpio_cfg_output(PIN_MOSI);
        
        //nrf_gpio_pin_clear(PIN_SCK);
        //nrf_gpio_pin_clear(PIN_MOSI);
        
        spi_init();
    
        nrf_gpio_cfg_input(PIN_DRDY,NRF_GPIO_PIN_NOPULL);
    
        nrf_gpio_pin_set(CS_PIN);
        //NRF_GPIO->PIN_CNF[CS_PIN] = (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos) |
        //                            (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) |
        //                            (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) |
        //                            (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) |
        //                            (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos);
    
        nrf_gpio_cfg_output(CS_PIN);
    
        nrf_gpio_pin_set(CS_PIN);
        nrf_gpio_pin_set(RESET_PIN);
    
        NRF_LOG_INFO("SPI init success");
    #ifdef POLL_DREADY
        NRF_LOG_INFO("DRDY polling enabled");
    #else
        NRF_LOG_INFO("DRDY interrupt not implemented");
    #endif
        return true;
    }
    
    void poll_dready(void) {
    #ifdef POLL_DREADY
        NRF_LOG_INFO("Polling DRDY, state: %d", nrf_gpio_pin_read(PIN_DRDY));
        if (nrf_gpio_pin_read(PIN_DRDY) == 0) {
            NRF_LOG_INFO("DRDY low, receiving data");
            ADS1299_receive_data();
            send_new_available_data();
        }
    #endif
    }
    
    bool ADS1299_write_register(uint8_t address, uint8_t value) {
    
        uint8_t opcode1 = address | COMMAND_WREG;
        nrf_gpio_pin_clear(CS_PIN);
    
        //if (!spi_transfer_byte_v2(opcode1, NULL)) {
        //    nrf_gpio_pin_set(CS_PIN);
        //    return false;
        //}
        //if (!spi_transfer_byte_v2(0x00, NULL)) {
        //    nrf_gpio_pin_set(CS_PIN);
        //    return false;
        //}
        //if (!spi_transfer_byte_v2(value, NULL)) {
        //    nrf_gpio_pin_set(CS_PIN);
        //    return false;
        //}
        
        spi_transfer_byte(opcode1);
        spi_transfer_byte(0x00);
        spi_transfer_byte(value);
        nrf_delay_us(4);
        nrf_gpio_pin_set(CS_PIN);
        regData[address] = value;
        
        
        return true;
    }
    
    bool ADS1299_read_register(uint8_t address, uint8_t *value) {
        uint8_t opcode1 = address | COMMAND_RREG;
        
        nrf_gpio_pin_clear(CS_PIN);
    
        //if (!spi_transfer_byte_v2(opcode1, NULL)) {
        //    nrf_gpio_pin_set(CS_PIN);
        //    return false;
        //}
        //if (!spi_transfer_byte_v2(0x00, NULL)) {
        //    nrf_gpio_pin_set(CS_PIN);
        //    return false;
        //}
        //if (!spi_transfer_byte_v2(0x00, value)) {
        //    nrf_gpio_pin_set(CS_PIN);
        //    return false;
        //}
        
        spi_transfer_byte(opcode1);
        spi_transfer_byte(0x00);
        *value = spi_transfer_byte(0x00);
    
        nrf_delay_us(4);
    
        nrf_gpio_pin_set(CS_PIN);
    
        regData[address] = *value;
        
        return true;
    }
    
    bool ADS1299_send_command(uint8_t command) {
        uint8_t dummy;
        nrf_gpio_pin_clear(CS_PIN);
        //if (!spi_transfer_byte_v2(command, &dummy)) {
        //    NRF_LOG_ERROR("Failed to send command 0x%02x", command);
        //    nrf_gpio_pin_set(CS_PIN);
        //    return false;
        //}
        spi_transfer_byte(command);
    
        nrf_delay_us(4);
        nrf_gpio_pin_set(CS_PIN);
        return true;
    }
    
    bool ADS1299_send_start(void) {
    
        bool result = ADS1299_send_command(COMMAND_START);    
        return result;
    }
    
    bool ADS1299_send_read_continuous(void) {
        bool result = ADS1299_send_command(COMMAND_RDATAC);
        nrf_delay_us(3);
        return result;
    }
    
    bool ADS1299_send_reset(void) {
        //nrf_gpio_pin_clear(CS_PIN);
        bool result = ADS1299_send_command(COMMAND_RESET);
        nrf_delay_us(20);
        //nrf_gpio_pin_set(CS_PIN);
        NRF_LOG_INFO("Reset command sent, result: %d", result);
        return result;
    }
    
    bool ADS1299_send_sdatac(void) {
        //nrf_gpio_pin_clear(CS_PIN);
        bool result = ADS1299_send_command(COMMAND_SDATAC);
        //nrf_gpio_pin_set(CS_PIN);
        nrf_delay_ms(10);
        NRF_LOG_INFO("Stop read continuously command sent, result: %d", result);
        return result;
    }
    
    bool ADS1299_receive_data(void) {
        new_data_available = false;
        if (!spi_transfer_bytes(NULL, rx_buffer, 27)) {
            NRF_LOG_ERROR("Failed to receive data");
            return false;
        }
        new_data_available = true;
        NRF_LOG_INFO("Data received, triggering send_new_available_data");
        return true;
    }
    
    bool ADS1299_poll_new_data(ADS1299_data_t *data) {
        if (new_data_available) {
            new_data_available = false;
            *data = ADS1299_convert_data();
            return true;
        }
        return false;
    }
    
    static inline int32_t buffer_to_channel(uint8_t id) {
        int32_t value = (rx_buffer[3 + id * 3] << 16) | (rx_buffer[4 + id * 3] << 8) | rx_buffer[5 + id * 3];
        if (value & 0x00800000) {
            value |= 0xFF000000;
        } else {
            value &= 0x00FFFFFF;
        }
        return value;
    }
    
    ADS1299_data_t ADS1299_convert_data(void) {
        ADS1299_data_t data;
        data.lead_off_positive = rx_buffer[0] << 4;
        data.lead_off_positive |= (rx_buffer[1] & 0b11110000) >> 4;
        data.lead_off_negative = rx_buffer[1] << 4;
        data.lead_off_negative |= (rx_buffer[2] & 0b11110000) >> 4;
        data.gpio_0 = rx_buffer[2] & 0b00001000;
        data.gpio_1 = rx_buffer[2] & 0b00000100;
        data.gpio_2 = rx_buffer[2] & 0b00000010;
        data.gpio_3 = rx_buffer[2] & 0b00000001;
        data.channel_0 = buffer_to_channel(0);
        data.channel_1 = buffer_to_channel(1);
        data.channel_2 = buffer_to_channel(2);
        data.channel_3 = buffer_to_channel(3);
        data.channel_4 = buffer_to_channel(4);
        data.channel_5 = buffer_to_channel(5);
        data.channel_6 = buffer_to_channel(6);
        data.channel_7 = buffer_to_channel(7);
        return data;
    }
    
    void send_new_available_data(void) {
        if (new_data_available) {
            new_data_available = false;
            NRF_LOG_INFO("Sample: %d", sample_number++);
            for (uint8_t i = 0; i < 27; i++) {
                NRF_LOG_INFO("Byte %d: 0x%02x", i, rx_buffer[i]);
            }
        }
    }

  • Based on the traces, J2 is not connected because I am not using the MMB0 board. Therefore, I am connecting 5V to the third pin of JP2. I believed that when I connect 5V this way, it would supply power to the board. Thank you for clarifying the SPI_CS. Following that, I moved the SPI_CS pin to the third pin of JP21. Thanks for your reply  .

  • Edit: Photo shows J2 but I misread your last post - I see you now have JP2 not J2

    J2 is only present for physically attaching to MMB0 board; there are no electrical connections to J2 on the ADS board according to the ADS schematic. The MMBO 20-pin connectors are connected in parallel, but ADS J2 goes nowhere. For reference this is the MMBO schematic:

    1121.MMB0_Sch_RevD.PDF

  • Thanks for your reply  . I am taking up too much of your time. So basically, I want to discuss the general following path of the configuration. Using the same configuration architecture, I created a simple SPI test with nRF52840DK as the master and Arduino Uno as the slave. As a result, I achieved successful communication between them. I can now read and write values to the Arduino Uno via nRF52840. On the other hand, ADS1299 configuration fails every time. According to our discussion, we end up with a power management problem. 

    The point I want to make is that, if I follow the path I have outlined below, can I also establish communication between the ADS1299 and the nRF52840? If the problem I am experiencing is not a configuration problem, can I get a system ready for communication once I solve the power problem?



    Thanks for your reply.

  • Yes. Also note JP2 pins 1 and 3 rely on an external 5V supply which is required. Good luck ..

  • Sorry to bother you again  . I have a new board. I am feeding the AVDD with 5V and the DVDD with 3V from the nRF52840DK. I know the picture doesn't help, but I put the ADS1299 chip on the board and brought all the pins out. So, I am getting this result: MISO line returns 0x00 all the time, but it shows like toggling. I am supplying voltages from the nRF52840DK. I am using 5V to 0 as an AVDD-AVSS. I cannot get any response. I controlled VCAP1, and I measured it as 1.2V. Really, I do not understand where the problem is. I did not change anything in my code.

     

      

Reply
  • Sorry to bother you again  . I have a new board. I am feeding the AVDD with 5V and the DVDD with 3V from the nRF52840DK. I know the picture doesn't help, but I put the ADS1299 chip on the board and brought all the pins out. So, I am getting this result: MISO line returns 0x00 all the time, but it shows like toggling. I am supplying voltages from the nRF52840DK. I am using 5V to 0 as an AVDD-AVSS. I cannot get any response. I controlled VCAP1, and I measured it as 1.2V. Really, I do not understand where the problem is. I did not change anything in my code.

     

      

Children
No Data
Related