This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

timer seems to stop

The hardware is a custom board with a Rigado BMD300 module (which uses the nRF52832).  I am using Softdevice S132.

My code base started as the ble_app_uart peripheral example.  To this I am trying to add SPI code to communicate with multiple SPI-to-UART bridges on SPI0 and SPI1 although I do not believe the problem is with the SPI code.

After sending a message to a SPI slave my code calls a delay_ms() routine and waits for the SPI to finish.

      // Set LCR to 0x80
      tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_LCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
      tx_buf[1] = 0x80;			// value
      *busy_flag = SPI_TX_IN_PROGRESS;
      
      nrf_drv_spi_transfer( spi_instance, tx_buf, 2, NULL, 0 );
      while( *busy_flag != SPI_AVAILABLE )
      {
	 delay_ms( 2 );
      }

void delay_ms( uint32_t count)
{
   uint32_t			end;
   
   if( timestamp != 0 )
   {
      end = count + timestamp;
      
      while( timestamp < end )
      {
	   //NRF_LOG_PROCESS();	// may as well do something useful
	 asm("nop");
      }
   }
   
   return;
}  // end of delay()

The timestamp variable is updated in my timer callback.  I put a debug statement to toggle an LED n the callback and verified it was both running and running at the expected rate (1 ms).

The busy_flag is updated in the SPI event handler.

The code often gets stuck waiting to the delay_ms() to complete.  The only way I can see that happening is for the app_timer() library to stop running under some circumstance.

When I put a breakpoint (I am using IAR's EWARM and a Segger JLINK) in the timestamp timer's handler routine after a few seconds of the application hanging, the call stack looks like the following:

Stepping through the code (and checking the disassembly) shows the expected result: the global timestamp variable is incremented by one.

I would guess that the timer stopped running except that the breakpoint in the timer service routine was encountered and stopped the debugger.

I realize there is an overflow possibility if the timestamp is close to max but since it starts at zero there shouldn't be a problem.

Any suggestions on what to look at or how to debug this?  Using the debugger breaks the code - I eventually hit a NRF_BREAKPOINT_COND in the app_error_fault_handler().  I am using the Segger RTT Viewer to see printf()'s sprinkled through the code but I'm not getting anywhere fast.

Parents
  • Hi,

    Can you share more of your code? Is the timestamp variable volatile?

  • The timestamp variable is global.  Making it volatile did not change the assembly code that was generated.

    I think these are the relevant files.

    /**
     * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
     * 
     * All rights reserved.
     * 
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     * 
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     * 
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     * 
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     * 
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     * 
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     * 
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     * 
     */
    /** @file
     *
     * @defgroup ble_sdk_uart_over_ble_main main.c
     * @{
     * @ingroup  ble_sdk_app_nus_eval
     * @brief    UART over BLE application main file.
     *
     * This file contains the source code for a sample application that uses the Nordic UART service.
     * This application uses the @ref srvlib_conn_params module.
     */
    
    
    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    //#include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    #include "nrf_log.h"
    #include "gpio.h"
    
    //#include "nrf_sdm.h"
    
    #include "SEGGER_rtt.h"
        
    #include "spi.h"
    #include "m2k_dsh.h"
    #include "bsp_2000M.h"
        
    #define MAIN_ALLOC_STORAGE
    #include "main.h"
    
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "FNIR 2000M"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    APP_TIMER_DEF(m_battery_timer_id);
    APP_TIMER_DEF(m_timestamp_id);
    APP_TIMER_DEF(m_scantimer_id);
    
    #define TIMESTAMP_INTERVAL		APP_TIMER_TICKS(1)	// 1 ms timer
    #define SCANTIMER_INTERVAL		APP_TIMER_TICKS(100)	// 100 ms timer
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    //*********************************************************************
    void battery_level_update( void )
    {
    //    ret_code_t err_code;
    //    uint8_t  battery_level;
    //
    //    battery_level = (uint8_t)sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg);
    //
    //    err_code = ble_bas_battery_level_update(&m_bas, battery_level, BLE_CONN_HANDLE_ALL);
    //    if ((err_code != NRF_SUCCESS) &&
    //        (err_code != NRF_ERROR_INVALID_STATE) &&
    //        (err_code != NRF_ERROR_RESOURCES) &&
    //        (err_code != NRF_ERROR_BUSY) &&
    //        (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
    //       )
    //    {
    //        APP_ERROR_HANDLER(err_code);
    //    }
        
        return;
    }
    
    
    /**@brief Function for handling the Battery measurement timer timeout.
     *
     * @details This function will be called each time the battery level measurement timer expires.
     *
     * @param[in]   p_context   Pointer used for passing some arbitrary information (context) from the
     *                          app_start_timer() call to the timeout handler.
     */
    //*********************************************************************
    static void battery_level_meas_timeout_handler(void * p_context)
    {
        UNUSED_PARAMETER(p_context);
        battery_level_update();
    }
    
    //*********************************************************************
    void timestamp_timer_handler( void * p_context )
    {
       
       timestamp++;
       
       return;
    } // end of timestamp_timer_handler()
    
    
    //*********************************************************************
    void scantimer_handler( void * p_context )
    {
       static int		led_on = 0;
       
    
       // Blink LED
       if( led_on )
       {
          set_activity_led( LED_BLUE_PIN, 0 );
          led_on = 0;
       }
       else
       {
          set_activity_led( LED_BLUE_PIN, 1 );
          led_on = 1;
       }
       
       // Start a scan
       
       return;
    } // end of scantimer_handler()
    
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code;
        
        err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_create( &m_battery_timer_id,
                                     APP_TIMER_MODE_REPEATED,
                                     battery_level_meas_timeout_handler);
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_create( &m_timestamp_id,
                                     APP_TIMER_MODE_REPEATED,
                                     timestamp_timer_handler);
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_start( m_timestamp_id, 
    			        TIMESTAMP_INTERVAL, 
    				NULL);
        APP_ERROR_CHECK(err_code);
    
        err_code = app_timer_create( &m_scantimer_id,
                                     APP_TIMER_MODE_REPEATED,
                                     scantimer_handler);
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_start( m_scantimer_id, 
    			        SCANTIMER_INTERVAL, 
    				NULL);
        APP_ERROR_CHECK(err_code);
        
        
        
        return;
    } // end of timers_init()
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
    //        uint32_t err_code;
    
            NRF_LOG_INFO("Received data from BLE NUS. Not writing data on UART.");
            NRF_LOG_HEXDUMP_INFO(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    	
    	spi_send( SPI_LEFT, 
    		  (uint8_t *) p_evt->params.rx_data.p_data, 
    		  p_evt->params.rx_data.length );
    
    //        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
    //        {
    //            do
    //            {
    //                //err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
    //	        err_code = NRF_SUCCESS;
    //                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
    //                {
    //                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
    //                    APP_ERROR_CHECK(err_code);
    //                }
    //            } while (err_code == NRF_ERROR_BUSY);
    //        }
    //        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
    //        {
    //            //while (app_uart_put('\n') == NRF_ERROR_BUSY);
    //        }
        }
        else
        {
           NRF_LOG_INFO( "Received unhandled event type %d", p_evt->type );
        }
    
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
    	    NRF_LOG_INFO( "Hit the default case at line %d in %s\r\n", 
    			  __LINE__, __FILE__ );
    	    NRF_LOG_INFO( "evt_id = %d (0x%x)", 
    			  p_ble_evt->header.evt_id,
    			  p_ble_evt->header.evt_id );
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_INFO( "ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t 		startup_event;
        uint32_t 			err_code;
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    #define DEVELOP_MSG		200
    
    /**@brief Application main function.
     */
    int main(void)
    {
        bool 			erase_bonds;
        long			loop;
        uint8_t			msg[ DEVELOP_MSG ];
    
        
        ctlr_zero_len_msg_t		status_req_msg;
        status_msg_t		status_resp_msg;
        
        
    
        // Initialize.
        timestamp = 0;
        
        log_init();
        timers_init();
        gpio_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
    
        // Start execution.
        
        advertising_start();
        NRF_LOG_INFO("Line %d, After conn_params_init()", __LINE__ );
        
        gpio_init();
        
        spi_init();
        NRF_LOG_INFO("Line %d, After spi_init()", __LINE__ );
    
        BSP_PowerSensorHeadOff( SENSOR_HEAD_1A_INDEX );
        BSP_PowerSensorHeadOff( SENSOR_HEAD_2A_INDEX );
        
        // nrf_delay_ms( 200 );
    
        BSP_PowerSensorHeadNormal( SENSOR_HEAD_1A_INDEX );
        //BSP_PowerSensorHeadNormal( SENSOR_HEAD_2A_INDEX );
        
        // nrf_delay_ms( 200 );
        
        status_req_msg.startByte 	= FNIR_CTLR_MSG_START_BYTE;
        status_req_msg.cmd  	= CS_STATUS_REQ_MSG_ID;
        status_req_msg.stopByte  	= FNIR_CTLR_MSG_STOP_BYTE;
        status_req_msg.len 		= FNIR_CTLR_ZERO_LEN_MSG_SIZE;
        
        status_req_msg.crc 		= status_req_msg.cmd;
        
        spi_send( SPI_LEFT, 
    	      (uint8_t *) &status_req_msg, 
    	      FNIR_CTLR_ZERO_LEN_MSG_SIZE );
        
        NRF_LOG_INFO( "Sent status request msg to DSH" );
    
        loop = 0;
        // Enter main loop.
        for (;;)
        {
           if( SPI_left_port_busy != SPI_AVAILABLE )
           {
    	  NRF_LOG_INFO("spi_send() not yet complete");
           }
           
           
    
           
           delay_ms(2000);
           snprintf( (char *)msg, DEVELOP_MSG, "Loop = %d", loop++ );
           NRF_LOG_INFO("%s", msg );
          
           do
           {
             NRF_LOG_PROCESS();
           } while( NRF_LOG_PROCESS() );
        }
    } // end of main()
    
    //wtf
    
    void nrfx_power_irq_handler(void)
    {
      return;
    }
    
    //*********************************************************************
    void app_error_fault_handler(uint32_t id, uint32_t pc, uint32_t info)
    {
       __disable_irq();
       NRF_LOG_FINAL_FLUSH();
       
       NRF_LOG_ERROR("Fatal error at line %d in %s", __LINE__, __FILE__);
       
       
       switch (id)
       {
       case NRF_FAULT_ID_SDK_ASSERT:
          {
    	 assert_info_t * p_info = (assert_info_t *)info;
    	 NRF_LOG_ERROR("ASSERTION FAILED at %s:%u",
    		       p_info->p_file_name,
    		       p_info->line_num);
    	 break;
          }
       case NRF_FAULT_ID_SDK_ERROR:
          {
    	 error_info_t * p_info = (error_info_t *)info;
    	 NRF_LOG_ERROR("ERROR %u [%s] at %s:%u\r\nPC at: 0x%08x",
    		       p_info->err_code,
    		       nrf_strerror_get(p_info->err_code),
    		       p_info->p_file_name,
    		       p_info->line_num,
    		       pc);
    	 NRF_LOG_ERROR("End of error report");
    	 break;
          }
       default:
          NRF_LOG_ERROR("UNKNOWN FAULT at 0x%08X", pc);
          break;
       }
       
       NRF_BREAKPOINT_COND;
       // On assert, the system can only recover with a reset.
       
    #ifndef DEBUG
       NRF_LOG_WARNING("System reset");
       NVIC_SystemReset();
    #else
       app_error_save_and_stop(id, pc, info);
    #endif // DEBUG
       
       NRF_LOG_FINAL_FLUSH();
       
       return;    
    }
    
    //*********************************************************************
    void delay_ms( uint32_t count)
    {
       uint32_t			end;
       
       if( timestamp != 0 )
       {
          end = count + timestamp;
          
          while( timestamp < end )
          {
    	   //NRF_LOG_PROCESS();	// may as well do something useful
    	 asm("nop");
          }
       }
       
       return;
    }  // end of delay_ms()
    
    /**
     * @}
     */
    

       
    #define  SPI_ALLOC_STORAGE
    #include "spi.h"
    
    #include "gpio.h"
    #include "nrf_log.h"
    #include "nrf_gpiote.h"
    #include "main.h"
    #include "sc16is7x0.h"
    
    
    
    static const nrf_drv_spi_t		SPI_left = NRF_DRV_SPI_INSTANCE(0);
    
    static const nrf_drv_spi_t		SPI_right = NRF_DRV_SPI_INSTANCE(1);
    
    static const nrf_drv_spi_t		SPI_flash = NRF_DRV_SPI_INSTANCE(2);
    
    
    
    //*********************************************************************
    // * @brief SPI user event handler.
     //* @param event
    //*********************************************************************
    void 
       spi_event_handler(
          nrf_drv_spi_evt_t const * 	p_event,
           void *                    	p_context)
    {
       
       //NRF_LOG_INFO("line %d in spi_event_handler()", __LINE__ );
       
      
       if( p_event->type == NRF_DRV_SPI_EVENT_DONE )
       {
          // A SPI transfer finished but which one?
          if( p_context == (const nrf_drv_spi_t *)&SPI_left )
          {
    	 // It was SPI_LEFT
    	 
    	 // Need to manage buffer
    	 if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 {
    	    // It was a transmit
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy = SPI_AVAILABLE;
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes = 0;
    	    
    	    SPI_left_tx_deq_index++;
    	    if( SPI_left_tx_deq_index >= SPI_TX_BUFFERS )
    	    {
    	       SPI_left_tx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be sent
    	    if( SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy == SPI_TX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be sent
    	       nrf_drv_spi_transfer( &SPI_left,
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].data,	// tx ptr
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes,	// tx len
    				     NULL,		// rx ptr
    				     0 );		// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 else if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 {
    	    // It was a receive
    	    SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy = SPI_RX_DONE;
    	    
    	    SPI_left_rx_deq_index++;
    	    if( SPI_left_rx_deq_index >= SPI_RX_BUFFERS )
    	    {
    	       SPI_left_rx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be received
    	    if( SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy == SPI_RX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be received
    	       nrf_drv_spi_transfer( &SPI_left,
    				     NULL,
    				     0,
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].data,	// rx ptr
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].bytes);	// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 else
    	 {
    	    // Got a SPI Event Done indication but don't know why
    	    NRF_LOG_DEBUG( "Bad state at line %d in %s", 
    			   __LINE__,
    			   __FILE__ );
    	    SPI_left_port_busy = SPI_AVAILABLE;
    	 }
          }
          else if( p_context == (const nrf_drv_spi_t *)&SPI_right )
          {
    	 // It was SPI_LEFT
    	 
    	 // Need to manage buffer
    	 if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 {
    	    // It was a transmit
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy = SPI_AVAILABLE;
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes = 0;
    	    
    	    SPI_left_tx_deq_index++;
    	    if( SPI_left_tx_deq_index >= SPI_TX_BUFFERS )
    	    {
    	       SPI_left_tx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be sent
    	    if( SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy == SPI_TX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be sent
    	       nrf_drv_spi_transfer( &SPI_left,
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].data,	// tx ptr
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes,	// tx len
    				     NULL,		// rx ptr
    				     0 );		// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 else if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 {
    	    // It was a receive
    	    SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy = SPI_RX_DONE;
    	    
    	    SPI_left_rx_deq_index++;
    	    if( SPI_left_rx_deq_index >= SPI_RX_BUFFERS )
    	    {
    	       SPI_left_rx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be received
    	    if( SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy == SPI_RX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be received
    	       nrf_drv_spi_transfer( &SPI_left,
    				     NULL,
    				     0,
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].data,	// rx ptr
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].bytes);	// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 else
    	 {
    	    // Got a SPI Event Done indication but don't know why
    	    NRF_LOG_DEBUG( "Bad state at line %d in %s", 
    			   __LINE__,
    			   __FILE__ );
    	    SPI_left_port_busy = SPI_AVAILABLE;
    	 }	 
          } // end of if( p_context == (const nrf_drv_spi_t *)&SPI_right )
          else if( p_context == (const nrf_drv_spi_t *)&SPI_flash  )
          {
    	 // It was SPI_FLASH
    	 SPI_flash_busy = SPI_AVAILABLE;
          }
          else
          {
    	 // It is a mystery
    	 NRF_LOG_INFO( "Unexpected event at line %d in %s", __LINE__, __FILE__ );
          }
       }
       else
       {
          NRF_LOG_INFO( "p_event->type = %d", p_event->type );
       }
       
        return;
    }  // end of spi_event_handler()
    
    
    //*********************************************************************
    //**@brief  Function for initializing the SPI module.
    //
    //**@snippet [SPI Initialization] */
    //*********************************************************************
    void 
       spi_init(
          void )
    {
      
       nrf_drv_spi_config_t 	config = NRF_DRV_SPI_DEFAULT_CONFIG;
      
       uint32_t			ret_code;
       uint8_t			loop;
    
       
       // Clear the message buffer areas
       SPI_left_rx_enq_index = 0;
       SPI_right_rx_enq_index = 0;
       SPI_left_tx_enq_index = 0;
       SPI_right_tx_enq_index = 0;
       SPI_flash_enq_index = 0;
       
       SPI_left_rx_deq_index = 0;
       SPI_right_rx_deq_index = 0;
       SPI_left_tx_deq_index = 0;
       SPI_right_tx_deq_index = 0;
       SPI_flash_deq_index = 0;
    
       
       for( loop = 0; loop < SPI_TX_BUFFERS; loop++ )
       {
          SPI_left_tx_buff[loop].busy = SPI_AVAILABLE;
          SPI_left_tx_buff[loop].bytes = 0;
          memset( SPI_left_tx_buff[loop].data,
    	      0,
    	      SPI_TX_BUFFER_LEN );
          
          SPI_right_tx_buff[loop].busy = SPI_AVAILABLE;
          SPI_right_tx_buff[loop].bytes = 0;
          memset( SPI_right_tx_buff[loop].data,
    	      0,
    	      SPI_TX_BUFFER_LEN );
       }
       
       for( loop = 0; loop < SPI_RX_BUFFERS; loop++ )
       {
          SPI_left_rx_buff[loop].busy = SPI_AVAILABLE;
          SPI_left_rx_buff[loop].bytes = 0;
          memset( SPI_left_rx_buff[loop].data,
    	      0,
    	      SPI_RX_BUFFER_LEN );
          
          SPI_right_rx_buff[loop].busy = SPI_AVAILABLE;
          SPI_right_rx_buff[loop].bytes = 0;
          memset( SPI_right_rx_buff[loop].data,
    	      0,
    	      SPI_RX_BUFFER_LEN );      
       }
       
       for( loop = 0; loop < SPI_TX_BUFFERS; loop++ )
       {
          SPI_flash_buff[loop].busy = SPI_AVAILABLE;
          SPI_flash_buff[loop].bytes = 0;
          memset( SPI_flash_buff[loop].data,
    	      0,
    	      SPI_TX_BUFFER_LEN );
       }
       
       // Configure SPI0 (Left Port) first
       config.sck_pin =  	SPIM0_SCK_PIN;
       config.mosi_pin = 	SPIM0_MOSI_PIN;
       config.miso_pin = 	SPIM0_MISO_PIN;
       config.ss_pin = 	SPIM0_SS_PIN;	// active low
       config.irq_priority = NRFX_SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
       config.orc = 	0xFF;
    //   config.frequency = 	NRF_SPI_FREQ_4M;
    //   config.mode = 	NRF_SPI_MODE_0;
    //   config.bit_order = 	NRF_SPI_BIT_ORDER_MSB_FIRST;
         
       ret_code = nrf_drv_spi_init( &SPI_left, 
    			        &config, 
    			        spi_event_handler, 
    				(void *) &SPI_left );	// context pointer
       
       if( ret_code != NRF_SUCCESS )
       {
          // Handle the error
          NRF_LOG_INFO( "nrf_drv_spi_init() failure at line %d", __LINE__ );
          app_error_fault_handler( 0, 0, 0);
       }
       else
       {
          // Configure the Left port spi-uart bridge
          NRF_LOG_INFO( "nrf_drv_spi_init() success at line %d", __LINE__ );
          spi_configure_chip( &SPI_left );
       }
       
       // Configure SPI1 (Right Port) next
       config.sck_pin =  	SPIM1_SCK_PIN;
       config.mosi_pin = 	SPIM1_MOSI_PIN;
       config.miso_pin = 	SPIM1_MISO_PIN;
       config.ss_pin = 	SPIM1_SS_PIN;	// active low
       config.irq_priority = NRFX_SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
       config.orc = 	0xFF;
    //   config.frequency = 	NRF_SPI_FREQ_4M;
    //   config.mode = 	NRF_SPI_MODE_0;
    //   config.bit_order = 	NRF_SPI_BIT_ORDER_MSB_FIRST;
         
       ret_code = nrf_drv_spi_init( &SPI_right, 
    			       &config, 
    			       spi_event_handler, 
    			       (void *) &SPI_right );	// context pointer
       if( ret_code != NRF_SUCCESS )
       {
          // Handle the error
          NRF_LOG_INFO( "nrf_drv_spi_init() failure at line %d", __LINE__ );
          app_error_fault_handler( 0, 0, 0);
       }
       else
       {
          // Configure the Left port spi-uart bridge
          NRF_LOG_INFO( "nrf_drv_spi_init() success at line %d", __LINE__ );
          spi_configure_chip( &SPI_right );
       }
    
       // Configure SPI2 (SPI Flash) next
       config.sck_pin =  	SPIM2_SCK_PIN;
       config.mosi_pin = 	SPIM2_MOSI_PIN;
       config.miso_pin = 	SPIM2_MISO_PIN;
       config.ss_pin = 	SPIM2_SS_PIN;	// active low
       config.irq_priority = NRFX_SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
       config.orc = 	0xFF;
    //   config.frequency = 	NRF_SPI_FREQ_4M;
    //   config.mode = 	NRF_SPI_MODE_0;
    //   config.bit_order = 	NRF_SPI_BIT_ORDER_MSB_FIRST;
         
       ret_code = nrf_drv_spi_init( &SPI_flash,
    			       &config, 
    			       spi_event_handler,
    			       (void *) &SPI_flash );
       
       if( ret_code != NRF_SUCCESS )
       {
          // Handle the error
          NRF_LOG_INFO( "nrf_drv_spi_init() failure at line %d", __LINE__ );
          app_error_fault_handler( 0, 0, 0);
       }
    
    
       return;
    
    }  // end of spi_init()
    
    
    //*********************************************************************
    void 
       lp_irq_handler( 
          nrf_drv_gpiote_pin_t 			pin, 
          nrf_gpiote_polarity_t 			action)
    {
       spi_interrupt_handler( pin, action );
       return;
    }
    
    //*********************************************************************
    void 
       rp_irq_handler( 
          nrf_drv_gpiote_pin_t 			pin, 
          nrf_gpiote_polarity_t 			action)
    {
       spi_interrupt_handler( pin, action );
       return;
    }
    //*********************************************************************
    void
       spi_interrupt_handler(
          nrf_drv_gpiote_pin_t 			pin, 
          nrf_gpiote_polarity_t 			action)
    {
       if( action == NRF_GPIOTE_POLARITY_LOTOHI )
       {
          NRF_LOG_INFO("pin = %d, action = LO to HI", pin );
       }
       else if( action == NRF_GPIOTE_POLARITY_HITOLO )
       {
          NRF_LOG_INFO("pin = %d, action = HI to LO", pin );
       }
       else if( action == NRF_GPIOTE_POLARITY_TOGGLE )
       {
          NRF_LOG_INFO("pin = %d, action = Toggle", pin );
       }
       else
       {
          NRF_LOG_INFO("pin = %d, action = unknown", pin );
       }
       
       return;			 
    }
    //*********************************************************************
    void 
       spi_bootloader_enable( 
          sensor_head_id_t 			sensorHeadId ) 
    {
     
       const nrf_drv_spi_t		*spi_instance;
       
       uint8_t			tx_buf[ 10 ];
       SPI_STATUS_E			*busy_flag;
    
       
       if( sensorHeadId == SENSOR_HEAD_1A_INDEX )
       {
          spi_instance = &SPI_left;
          busy_flag = &SPI_left_port_busy;
    
       }
       else if( sensorHeadId == SENSOR_HEAD_1B_INDEX )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_right_port_busy;
    
       }
       else
       {
          spi_instance = NULL;
       }
       
       if( spi_instance != NULL )
       {
          // Set MCR to 0x00 to set RTS output hi (BOOT0=1, boot into bootloader)
          tx_buf[0] = 0x00 | (SC16IS7X0_MCR << SC16IS7X0_ADDR_SHIFT) ;	// R/W and address
          tx_buf[1] = 0x00;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          APP_ERROR_CHECK(nrf_drv_spi_transfer( spi_instance,
                                tx_buf,
                                2,
                                NULL,
                                0 ) );
          while( *busy_flag != SPI_AVAILABLE )
          {
             delay_ms( 2 );
          } 
       }
       
       return;
    } // end of spi_bootloader_enable()
    
    //*********************************************************************
    void 
       spi_bootloader_disable( 
          sensor_head_id_t 			sensorHeadId ) 
    {
     
       const nrf_drv_spi_t		*spi_instance;
       
       uint8_t			tx_buf[ 10 ];
       SPI_STATUS_E			*busy_flag;
    
       
       if( sensorHeadId == SENSOR_HEAD_1A_INDEX )
       {
          spi_instance = &SPI_left;
          busy_flag = &SPI_left_port_busy;
       }
       else if( sensorHeadId == SENSOR_HEAD_1B_INDEX )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_right_port_busy;
       }
       else
       {
          spi_instance = NULL;
       }
       
       if( spi_instance != NULL )
       {
          // Set MCR to 0x02 to set RTS output low (BOOT0=0, boot Flash)
          tx_buf[0] = 0x00 | (SC16IS7X0_MCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x02;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
                                tx_buf,
                                2,
                                NULL,
                                0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
             delay_ms( 2 );
          } 
       }
       
       return;
    }  // end of spi_bootloader_disable()
    
    //*********************************************************************
    // spi_configure_chip()
    //
    // Configure baud rate generator to 16x480kbps based on 7.680MHz clock
    // which requires a divide by 1.
    //
    // Enable RX FIFO
    //
    // Set RX FIFO interrupt level to 8 characters
    //
    // Enable RX timeout (4 character times since last received character)
    //
    //*********************************************************************
    void
       spi_configure_chip(
          const nrf_drv_spi_t		*spi_instance )
          
    {
       
       uint8_t			tx_buf[ 10 ];
       SPI_STATUS_E			*busy_flag;
       sensor_head_id_t		sensorHeadId;
       
       if( spi_instance != NULL )
       {
          if( spi_instance == &SPI_left )
          {
    	 busy_flag = &SPI_left_port_busy;
             sensorHeadId = SENSOR_HEAD_1A_INDEX;
          }
          else
          {
    	 busy_flag = &SPI_right_port_busy;
             sensorHeadId = SENSOR_HEAD_1B_INDEX;
          }
          
          // Set LCR to 0x80
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_LCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x80;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          }
          
          // Set DLL to 1
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_DLL << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x1;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          }
                
          // Set DHL to 0
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_DLH << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x0;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          }      
          
          // Set LCR to 0x03
          tx_buf[0] = SC16IS7X0_WRITE | ( SC16IS7X0_LCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x03;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          } 
       
          // Set MCR to 0x02 - Set RTS to low
          spi_bootloader_disable( sensorHeadId );
          
          // Setup FIFO
          //	- Set 0x01 to enable FIFOs
          //	- Set 0x02 to reset RX FIFO
          //	- Set 0x04 to reset TX FIFO
          //	- Set 0x00 to select 8 character level for RX FIFO interrupt
          // Set FCR to 0x07
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_FCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x07;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          } 
       
          // RX FIFO time-out does not require setup.
              
       }
    
       return;
    } // end of spi_configure_chip()
    
    //*********************************************************************
    // spi_send()
    //
    // This routine sends data to a SPI connected device but requires
    // access to local control structures.
    //*********************************************************************
    void
       spi_send(
          uint8_t		spi_num,
          uint8_t		*data_p,
          uint8_t		length )
     {
        
       const nrf_drv_spi_t		*spi_instance;
       SPI_STATUS_E			*busy_flag;
       uint8_t			len;
       int				msg_index;
       SPI_MSG_TX_BUF_T		*buff_p;
       
       
       if( spi_num == SPI_LEFT )
       {
          spi_instance = &SPI_left;
          busy_flag = &SPI_left_port_busy;
          msg_index = spi_get_tx_buff( spi_num );
          if( msg_index < 0 )
          {
    	 spi_instance = NULL;
    	 NRF_LOG_DEBUG( "no tx buff avail at line %d in %s", 
    		        __LINE__,
    			__FILE__ );
          }
          buff_p = &(SPI_left_tx_buff[msg_index]);
          NRF_LOG_INFO( "spi_send() for Left port" );
       }
       else if( spi_num == SPI_RIGHT )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_right_port_busy;
          msg_index = spi_get_tx_buff( spi_num );
          if( msg_index < 0 )
          {
    	 spi_instance = NULL;
    	 NRF_LOG_DEBUG( "no tx buff avail at line %d in %s", 
    		        __LINE__,
    			__FILE__ );
          }
          buff_p = &(SPI_right_tx_buff[msg_index]);
          NRF_LOG_INFO( "spi_send() for Right port" );
       }
       else if( spi_num == SPI_FLASH )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_flash_busy;
          msg_index = spi_get_tx_buff( spi_num );
          if( msg_index < 0 )
          {
    	 spi_instance = NULL;
    	 NRF_LOG_DEBUG( "no tx buff avail at line %d in %s", 
    		        __LINE__,
    			__FILE__ );
          }
          buff_p = &(SPI_flash_buff[msg_index]);
          NRF_LOG_INFO( "spi_send() for Flash" );
       }
       else
       {
          spi_instance = NULL;
          busy_flag = NULL;
       }
       
       if( spi_instance )
       {
          // No guarentee the passed in address is not on a stack
          if( length > SPI_TX_BUFFER_LEN )
          {
    	 len = SPI_TX_BUFFER_LEN;
          }
          else
          {
    	 len = length;
          }
          
          memcpy( ((uint8_t *)(buff_p->data)+1), data_p, len );
          
          buff_p->data[0] = SC16IS7X0_THR;	// set transmit holding register address
          len++;				// account for the THR address
          buff_p->bytes = len;
          buff_p->busy = SPI_TX_IN_PROGRESS;	// mark descriptor
          
          *busy_flag = SPI_TX_IN_PROGRESS;		// mark hardware
          nrf_drv_spi_transfer( spi_instance,
    			    buff_p->data,	// tx ptr
    			    len,		// tx len
    			    NULL,		// rx ptr
    			    0 );		// rx len
       }
    
        return;
     } // end of spi_send()
    
    //*********************************************************************
    // spi_get_tx_buff()
    //
    // Return the index of a buffer descriptor or -1 if no descriptors are
    // available on the specified port
    //*********************************************************************
    int
       spi_get_tx_buff( uint8_t port )
    {
       int		ret_index;
       
       if( port == SPI_LEFT )
       {
          if( SPI_left_tx_buff[SPI_left_tx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_left_tx_enq_index;
    	 if( SPI_left_tx_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_left_tx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_RIGHT )
       {
          if( SPI_right_tx_buff[SPI_right_tx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_right_tx_enq_index;
    	 if( SPI_right_tx_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_right_tx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_FLASH )
       {
          if( SPI_flash_buff[SPI_flash_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_flash_enq_index;
    	 if( SPI_flash_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_flash_enq_index = 0;
    	 }
          }
       }
       else
       {
          ret_index = -1;
       }
       
       return( ret_index );
    }  // end of spi_get_tx_buff()
    
    //*********************************************************************
    // spi_get_rx_buff()
    //
    // Return the index of a buffer descriptor or -1 if no descriptors are
    // available on the specified port
    //*********************************************************************
    int
       spi_get_rx_buff( uint8_t port )
    {
       int		ret_index;
       
       if( port == SPI_LEFT )
       {
          if( SPI_left_rx_buff[SPI_left_rx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_left_rx_enq_index;
    	 if( SPI_left_rx_enq_index > SPI_RX_BUFFERS )
    	 {
    	    SPI_left_rx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_RIGHT )
       {
          if( SPI_right_rx_buff[SPI_right_rx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_right_rx_enq_index;
    	 if( SPI_right_rx_enq_index > SPI_RX_BUFFERS )
    	 {
    	    SPI_right_rx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_FLASH )
       {
          if( SPI_flash_buff[SPI_flash_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_flash_enq_index;
    	 if( SPI_flash_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_flash_enq_index = 0;
    	 }
          }
       }
       else
       {
          ret_index = -1;
       }
       
       return( ret_index );
    }  // end of spi_get_rx_buff()
    
    //*********************************************************************
    // spi_free_tx_buff()
    //
    // Release a buffer from the specified port
    //*********************************************************************
    void
       spi_free_tx_buff(
          uint8_t		port,
          int		index )
    {
    
       if( index < SPI_TX_BUFFERS )
       {
          if( port == SPI_LEFT )
          {
    	 SPI_left_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_left_tx_buff[index].bytes = 0;
    	 memset( SPI_left_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else if( port == SPI_RIGHT )
          {
    	 SPI_right_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_right_tx_buff[index].bytes = 0;
    	 memset( SPI_right_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else if( port == SPI_FLASH )
          {
    	 SPI_flash_buff[index].busy = SPI_AVAILABLE;
    	 SPI_flash_buff[index].bytes = 0;
    	 memset( SPI_flash_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "Wrong port at line %s in %d", __LINE__, __FILE__ );
          }
       }
       else
       {
          NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
       }
       
       return;
    }// spi_free_tx_buff()
    	    
    //*********************************************************************
    // spi_free_rx_buff()
    //
    // Release a buffer from the specified port
    //*********************************************************************
    void
       spi_free_rx_buff(
          uint8_t		port,
          int		index )
    {
    
       if( port == SPI_LEFT )
       {
          if( index < SPI_RX_BUFFERS )
          {
    	 SPI_left_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_left_tx_buff[index].bytes = 0;
    	 memset( SPI_left_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
          }
       }
       else if( port == SPI_RIGHT )
       {
          if( index < SPI_RX_BUFFERS )
          {
    	 
    	 SPI_right_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_right_tx_buff[index].bytes = 0;
    	 memset( SPI_right_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
          }
       }
       else if( port == SPI_FLASH )
       {
          if( index < SPI_TX_BUFFERS )	// Flash uses TX size
          {
    	 SPI_flash_buff[index].busy = SPI_AVAILABLE;
    	 SPI_flash_buff[index].bytes = 0;
    	 memset( SPI_flash_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
          }
       }
       else
       {
          NRF_LOG_DEBUG( "Wrong port at line %s in %d", __LINE__, __FILE__ );
       }
       
       return;
    }// spi_free_rx_buff()
    	    
    //*********************************************************************
    // spi_rx_msg_queued()
    //
    // Get a count of the number of spi rx messages queued
    //*********************************************************************
    uint8_t
       spi_rx_msg_queued(
          uint8_t			port )
    {
       uint8_t		msg_count;
       
       msg_count = 0;
       
       
       
       
       return( msg_count );
    } // end of spi_rx_msg_queued()
    				     
       
    //  end of file spi.c

    84487.sdk_config.h

    3683.main.h

Reply
  • The timestamp variable is global.  Making it volatile did not change the assembly code that was generated.

    I think these are the relevant files.

    /**
     * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
     * 
     * All rights reserved.
     * 
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     * 
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     * 
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     * 
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     * 
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     * 
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     * 
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     * 
     */
    /** @file
     *
     * @defgroup ble_sdk_uart_over_ble_main main.c
     * @{
     * @ingroup  ble_sdk_app_nus_eval
     * @brief    UART over BLE application main file.
     *
     * This file contains the source code for a sample application that uses the Nordic UART service.
     * This application uses the @ref srvlib_conn_params module.
     */
    
    
    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    //#include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    #include "nrf_log.h"
    #include "gpio.h"
    
    //#include "nrf_sdm.h"
    
    #include "SEGGER_rtt.h"
        
    #include "spi.h"
    #include "m2k_dsh.h"
    #include "bsp_2000M.h"
        
    #define MAIN_ALLOC_STORAGE
    #include "main.h"
    
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "FNIR 2000M"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    APP_TIMER_DEF(m_battery_timer_id);
    APP_TIMER_DEF(m_timestamp_id);
    APP_TIMER_DEF(m_scantimer_id);
    
    #define TIMESTAMP_INTERVAL		APP_TIMER_TICKS(1)	// 1 ms timer
    #define SCANTIMER_INTERVAL		APP_TIMER_TICKS(100)	// 100 ms timer
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    //*********************************************************************
    void battery_level_update( void )
    {
    //    ret_code_t err_code;
    //    uint8_t  battery_level;
    //
    //    battery_level = (uint8_t)sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg);
    //
    //    err_code = ble_bas_battery_level_update(&m_bas, battery_level, BLE_CONN_HANDLE_ALL);
    //    if ((err_code != NRF_SUCCESS) &&
    //        (err_code != NRF_ERROR_INVALID_STATE) &&
    //        (err_code != NRF_ERROR_RESOURCES) &&
    //        (err_code != NRF_ERROR_BUSY) &&
    //        (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
    //       )
    //    {
    //        APP_ERROR_HANDLER(err_code);
    //    }
        
        return;
    }
    
    
    /**@brief Function for handling the Battery measurement timer timeout.
     *
     * @details This function will be called each time the battery level measurement timer expires.
     *
     * @param[in]   p_context   Pointer used for passing some arbitrary information (context) from the
     *                          app_start_timer() call to the timeout handler.
     */
    //*********************************************************************
    static void battery_level_meas_timeout_handler(void * p_context)
    {
        UNUSED_PARAMETER(p_context);
        battery_level_update();
    }
    
    //*********************************************************************
    void timestamp_timer_handler( void * p_context )
    {
       
       timestamp++;
       
       return;
    } // end of timestamp_timer_handler()
    
    
    //*********************************************************************
    void scantimer_handler( void * p_context )
    {
       static int		led_on = 0;
       
    
       // Blink LED
       if( led_on )
       {
          set_activity_led( LED_BLUE_PIN, 0 );
          led_on = 0;
       }
       else
       {
          set_activity_led( LED_BLUE_PIN, 1 );
          led_on = 1;
       }
       
       // Start a scan
       
       return;
    } // end of scantimer_handler()
    
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code;
        
        err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_create( &m_battery_timer_id,
                                     APP_TIMER_MODE_REPEATED,
                                     battery_level_meas_timeout_handler);
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_create( &m_timestamp_id,
                                     APP_TIMER_MODE_REPEATED,
                                     timestamp_timer_handler);
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_start( m_timestamp_id, 
    			        TIMESTAMP_INTERVAL, 
    				NULL);
        APP_ERROR_CHECK(err_code);
    
        err_code = app_timer_create( &m_scantimer_id,
                                     APP_TIMER_MODE_REPEATED,
                                     scantimer_handler);
        APP_ERROR_CHECK(err_code);
        
        err_code = app_timer_start( m_scantimer_id, 
    			        SCANTIMER_INTERVAL, 
    				NULL);
        APP_ERROR_CHECK(err_code);
        
        
        
        return;
    } // end of timers_init()
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
    //        uint32_t err_code;
    
            NRF_LOG_INFO("Received data from BLE NUS. Not writing data on UART.");
            NRF_LOG_HEXDUMP_INFO(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    	
    	spi_send( SPI_LEFT, 
    		  (uint8_t *) p_evt->params.rx_data.p_data, 
    		  p_evt->params.rx_data.length );
    
    //        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
    //        {
    //            do
    //            {
    //                //err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
    //	        err_code = NRF_SUCCESS;
    //                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
    //                {
    //                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
    //                    APP_ERROR_CHECK(err_code);
    //                }
    //            } while (err_code == NRF_ERROR_BUSY);
    //        }
    //        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
    //        {
    //            //while (app_uart_put('\n') == NRF_ERROR_BUSY);
    //        }
        }
        else
        {
           NRF_LOG_INFO( "Received unhandled event type %d", p_evt->type );
        }
    
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
    	    NRF_LOG_INFO( "Hit the default case at line %d in %s\r\n", 
    			  __LINE__, __FILE__ );
    	    NRF_LOG_INFO( "evt_id = %d (0x%x)", 
    			  p_ble_evt->header.evt_id,
    			  p_ble_evt->header.evt_id );
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_INFO( "ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t 		startup_event;
        uint32_t 			err_code;
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    #define DEVELOP_MSG		200
    
    /**@brief Application main function.
     */
    int main(void)
    {
        bool 			erase_bonds;
        long			loop;
        uint8_t			msg[ DEVELOP_MSG ];
    
        
        ctlr_zero_len_msg_t		status_req_msg;
        status_msg_t		status_resp_msg;
        
        
    
        // Initialize.
        timestamp = 0;
        
        log_init();
        timers_init();
        gpio_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
    
        // Start execution.
        
        advertising_start();
        NRF_LOG_INFO("Line %d, After conn_params_init()", __LINE__ );
        
        gpio_init();
        
        spi_init();
        NRF_LOG_INFO("Line %d, After spi_init()", __LINE__ );
    
        BSP_PowerSensorHeadOff( SENSOR_HEAD_1A_INDEX );
        BSP_PowerSensorHeadOff( SENSOR_HEAD_2A_INDEX );
        
        // nrf_delay_ms( 200 );
    
        BSP_PowerSensorHeadNormal( SENSOR_HEAD_1A_INDEX );
        //BSP_PowerSensorHeadNormal( SENSOR_HEAD_2A_INDEX );
        
        // nrf_delay_ms( 200 );
        
        status_req_msg.startByte 	= FNIR_CTLR_MSG_START_BYTE;
        status_req_msg.cmd  	= CS_STATUS_REQ_MSG_ID;
        status_req_msg.stopByte  	= FNIR_CTLR_MSG_STOP_BYTE;
        status_req_msg.len 		= FNIR_CTLR_ZERO_LEN_MSG_SIZE;
        
        status_req_msg.crc 		= status_req_msg.cmd;
        
        spi_send( SPI_LEFT, 
    	      (uint8_t *) &status_req_msg, 
    	      FNIR_CTLR_ZERO_LEN_MSG_SIZE );
        
        NRF_LOG_INFO( "Sent status request msg to DSH" );
    
        loop = 0;
        // Enter main loop.
        for (;;)
        {
           if( SPI_left_port_busy != SPI_AVAILABLE )
           {
    	  NRF_LOG_INFO("spi_send() not yet complete");
           }
           
           
    
           
           delay_ms(2000);
           snprintf( (char *)msg, DEVELOP_MSG, "Loop = %d", loop++ );
           NRF_LOG_INFO("%s", msg );
          
           do
           {
             NRF_LOG_PROCESS();
           } while( NRF_LOG_PROCESS() );
        }
    } // end of main()
    
    //wtf
    
    void nrfx_power_irq_handler(void)
    {
      return;
    }
    
    //*********************************************************************
    void app_error_fault_handler(uint32_t id, uint32_t pc, uint32_t info)
    {
       __disable_irq();
       NRF_LOG_FINAL_FLUSH();
       
       NRF_LOG_ERROR("Fatal error at line %d in %s", __LINE__, __FILE__);
       
       
       switch (id)
       {
       case NRF_FAULT_ID_SDK_ASSERT:
          {
    	 assert_info_t * p_info = (assert_info_t *)info;
    	 NRF_LOG_ERROR("ASSERTION FAILED at %s:%u",
    		       p_info->p_file_name,
    		       p_info->line_num);
    	 break;
          }
       case NRF_FAULT_ID_SDK_ERROR:
          {
    	 error_info_t * p_info = (error_info_t *)info;
    	 NRF_LOG_ERROR("ERROR %u [%s] at %s:%u\r\nPC at: 0x%08x",
    		       p_info->err_code,
    		       nrf_strerror_get(p_info->err_code),
    		       p_info->p_file_name,
    		       p_info->line_num,
    		       pc);
    	 NRF_LOG_ERROR("End of error report");
    	 break;
          }
       default:
          NRF_LOG_ERROR("UNKNOWN FAULT at 0x%08X", pc);
          break;
       }
       
       NRF_BREAKPOINT_COND;
       // On assert, the system can only recover with a reset.
       
    #ifndef DEBUG
       NRF_LOG_WARNING("System reset");
       NVIC_SystemReset();
    #else
       app_error_save_and_stop(id, pc, info);
    #endif // DEBUG
       
       NRF_LOG_FINAL_FLUSH();
       
       return;    
    }
    
    //*********************************************************************
    void delay_ms( uint32_t count)
    {
       uint32_t			end;
       
       if( timestamp != 0 )
       {
          end = count + timestamp;
          
          while( timestamp < end )
          {
    	   //NRF_LOG_PROCESS();	// may as well do something useful
    	 asm("nop");
          }
       }
       
       return;
    }  // end of delay_ms()
    
    /**
     * @}
     */
    

       
    #define  SPI_ALLOC_STORAGE
    #include "spi.h"
    
    #include "gpio.h"
    #include "nrf_log.h"
    #include "nrf_gpiote.h"
    #include "main.h"
    #include "sc16is7x0.h"
    
    
    
    static const nrf_drv_spi_t		SPI_left = NRF_DRV_SPI_INSTANCE(0);
    
    static const nrf_drv_spi_t		SPI_right = NRF_DRV_SPI_INSTANCE(1);
    
    static const nrf_drv_spi_t		SPI_flash = NRF_DRV_SPI_INSTANCE(2);
    
    
    
    //*********************************************************************
    // * @brief SPI user event handler.
     //* @param event
    //*********************************************************************
    void 
       spi_event_handler(
          nrf_drv_spi_evt_t const * 	p_event,
           void *                    	p_context)
    {
       
       //NRF_LOG_INFO("line %d in spi_event_handler()", __LINE__ );
       
      
       if( p_event->type == NRF_DRV_SPI_EVENT_DONE )
       {
          // A SPI transfer finished but which one?
          if( p_context == (const nrf_drv_spi_t *)&SPI_left )
          {
    	 // It was SPI_LEFT
    	 
    	 // Need to manage buffer
    	 if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 {
    	    // It was a transmit
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy = SPI_AVAILABLE;
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes = 0;
    	    
    	    SPI_left_tx_deq_index++;
    	    if( SPI_left_tx_deq_index >= SPI_TX_BUFFERS )
    	    {
    	       SPI_left_tx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be sent
    	    if( SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy == SPI_TX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be sent
    	       nrf_drv_spi_transfer( &SPI_left,
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].data,	// tx ptr
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes,	// tx len
    				     NULL,		// rx ptr
    				     0 );		// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 else if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 {
    	    // It was a receive
    	    SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy = SPI_RX_DONE;
    	    
    	    SPI_left_rx_deq_index++;
    	    if( SPI_left_rx_deq_index >= SPI_RX_BUFFERS )
    	    {
    	       SPI_left_rx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be received
    	    if( SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy == SPI_RX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be received
    	       nrf_drv_spi_transfer( &SPI_left,
    				     NULL,
    				     0,
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].data,	// rx ptr
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].bytes);	// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 else
    	 {
    	    // Got a SPI Event Done indication but don't know why
    	    NRF_LOG_DEBUG( "Bad state at line %d in %s", 
    			   __LINE__,
    			   __FILE__ );
    	    SPI_left_port_busy = SPI_AVAILABLE;
    	 }
          }
          else if( p_context == (const nrf_drv_spi_t *)&SPI_right )
          {
    	 // It was SPI_LEFT
    	 
    	 // Need to manage buffer
    	 if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 {
    	    // It was a transmit
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy = SPI_AVAILABLE;
    	    SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes = 0;
    	    
    	    SPI_left_tx_deq_index++;
    	    if( SPI_left_tx_deq_index >= SPI_TX_BUFFERS )
    	    {
    	       SPI_left_tx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be sent
    	    if( SPI_left_tx_buff[ SPI_left_tx_deq_index ].busy == SPI_TX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be sent
    	       nrf_drv_spi_transfer( &SPI_left,
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].data,	// tx ptr
    				     SPI_left_tx_buff[ SPI_left_tx_deq_index ].bytes,	// tx len
    				     NULL,		// rx ptr
    				     0 );		// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_TX_IN_PROGRESS )
    	 else if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 {
    	    // It was a receive
    	    SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy = SPI_RX_DONE;
    	    
    	    SPI_left_rx_deq_index++;
    	    if( SPI_left_rx_deq_index >= SPI_RX_BUFFERS )
    	    {
    	       SPI_left_rx_deq_index = 0;
    	    }
    	 
    	    // Check if there is anything else to be received
    	    if( SPI_left_rx_buff[ SPI_left_rx_deq_index ].busy == SPI_RX_IN_PROGRESS )
    	    {
    	       // Buffer waiting to be received
    	       nrf_drv_spi_transfer( &SPI_left,
    				     NULL,
    				     0,
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].data,	// rx ptr
    				     SPI_left_rx_buff[ SPI_left_rx_deq_index ].bytes);	// rx len
    	    }
    	    else
    	    {
    	       // Set hardware port to available
    	       SPI_left_port_busy = SPI_AVAILABLE;
    	    }
    	 } // end of if( SPI_left_port_busy == SPI_RX_IN_PROGRESS )
    	 else
    	 {
    	    // Got a SPI Event Done indication but don't know why
    	    NRF_LOG_DEBUG( "Bad state at line %d in %s", 
    			   __LINE__,
    			   __FILE__ );
    	    SPI_left_port_busy = SPI_AVAILABLE;
    	 }	 
          } // end of if( p_context == (const nrf_drv_spi_t *)&SPI_right )
          else if( p_context == (const nrf_drv_spi_t *)&SPI_flash  )
          {
    	 // It was SPI_FLASH
    	 SPI_flash_busy = SPI_AVAILABLE;
          }
          else
          {
    	 // It is a mystery
    	 NRF_LOG_INFO( "Unexpected event at line %d in %s", __LINE__, __FILE__ );
          }
       }
       else
       {
          NRF_LOG_INFO( "p_event->type = %d", p_event->type );
       }
       
        return;
    }  // end of spi_event_handler()
    
    
    //*********************************************************************
    //**@brief  Function for initializing the SPI module.
    //
    //**@snippet [SPI Initialization] */
    //*********************************************************************
    void 
       spi_init(
          void )
    {
      
       nrf_drv_spi_config_t 	config = NRF_DRV_SPI_DEFAULT_CONFIG;
      
       uint32_t			ret_code;
       uint8_t			loop;
    
       
       // Clear the message buffer areas
       SPI_left_rx_enq_index = 0;
       SPI_right_rx_enq_index = 0;
       SPI_left_tx_enq_index = 0;
       SPI_right_tx_enq_index = 0;
       SPI_flash_enq_index = 0;
       
       SPI_left_rx_deq_index = 0;
       SPI_right_rx_deq_index = 0;
       SPI_left_tx_deq_index = 0;
       SPI_right_tx_deq_index = 0;
       SPI_flash_deq_index = 0;
    
       
       for( loop = 0; loop < SPI_TX_BUFFERS; loop++ )
       {
          SPI_left_tx_buff[loop].busy = SPI_AVAILABLE;
          SPI_left_tx_buff[loop].bytes = 0;
          memset( SPI_left_tx_buff[loop].data,
    	      0,
    	      SPI_TX_BUFFER_LEN );
          
          SPI_right_tx_buff[loop].busy = SPI_AVAILABLE;
          SPI_right_tx_buff[loop].bytes = 0;
          memset( SPI_right_tx_buff[loop].data,
    	      0,
    	      SPI_TX_BUFFER_LEN );
       }
       
       for( loop = 0; loop < SPI_RX_BUFFERS; loop++ )
       {
          SPI_left_rx_buff[loop].busy = SPI_AVAILABLE;
          SPI_left_rx_buff[loop].bytes = 0;
          memset( SPI_left_rx_buff[loop].data,
    	      0,
    	      SPI_RX_BUFFER_LEN );
          
          SPI_right_rx_buff[loop].busy = SPI_AVAILABLE;
          SPI_right_rx_buff[loop].bytes = 0;
          memset( SPI_right_rx_buff[loop].data,
    	      0,
    	      SPI_RX_BUFFER_LEN );      
       }
       
       for( loop = 0; loop < SPI_TX_BUFFERS; loop++ )
       {
          SPI_flash_buff[loop].busy = SPI_AVAILABLE;
          SPI_flash_buff[loop].bytes = 0;
          memset( SPI_flash_buff[loop].data,
    	      0,
    	      SPI_TX_BUFFER_LEN );
       }
       
       // Configure SPI0 (Left Port) first
       config.sck_pin =  	SPIM0_SCK_PIN;
       config.mosi_pin = 	SPIM0_MOSI_PIN;
       config.miso_pin = 	SPIM0_MISO_PIN;
       config.ss_pin = 	SPIM0_SS_PIN;	// active low
       config.irq_priority = NRFX_SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
       config.orc = 	0xFF;
    //   config.frequency = 	NRF_SPI_FREQ_4M;
    //   config.mode = 	NRF_SPI_MODE_0;
    //   config.bit_order = 	NRF_SPI_BIT_ORDER_MSB_FIRST;
         
       ret_code = nrf_drv_spi_init( &SPI_left, 
    			        &config, 
    			        spi_event_handler, 
    				(void *) &SPI_left );	// context pointer
       
       if( ret_code != NRF_SUCCESS )
       {
          // Handle the error
          NRF_LOG_INFO( "nrf_drv_spi_init() failure at line %d", __LINE__ );
          app_error_fault_handler( 0, 0, 0);
       }
       else
       {
          // Configure the Left port spi-uart bridge
          NRF_LOG_INFO( "nrf_drv_spi_init() success at line %d", __LINE__ );
          spi_configure_chip( &SPI_left );
       }
       
       // Configure SPI1 (Right Port) next
       config.sck_pin =  	SPIM1_SCK_PIN;
       config.mosi_pin = 	SPIM1_MOSI_PIN;
       config.miso_pin = 	SPIM1_MISO_PIN;
       config.ss_pin = 	SPIM1_SS_PIN;	// active low
       config.irq_priority = NRFX_SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
       config.orc = 	0xFF;
    //   config.frequency = 	NRF_SPI_FREQ_4M;
    //   config.mode = 	NRF_SPI_MODE_0;
    //   config.bit_order = 	NRF_SPI_BIT_ORDER_MSB_FIRST;
         
       ret_code = nrf_drv_spi_init( &SPI_right, 
    			       &config, 
    			       spi_event_handler, 
    			       (void *) &SPI_right );	// context pointer
       if( ret_code != NRF_SUCCESS )
       {
          // Handle the error
          NRF_LOG_INFO( "nrf_drv_spi_init() failure at line %d", __LINE__ );
          app_error_fault_handler( 0, 0, 0);
       }
       else
       {
          // Configure the Left port spi-uart bridge
          NRF_LOG_INFO( "nrf_drv_spi_init() success at line %d", __LINE__ );
          spi_configure_chip( &SPI_right );
       }
    
       // Configure SPI2 (SPI Flash) next
       config.sck_pin =  	SPIM2_SCK_PIN;
       config.mosi_pin = 	SPIM2_MOSI_PIN;
       config.miso_pin = 	SPIM2_MISO_PIN;
       config.ss_pin = 	SPIM2_SS_PIN;	// active low
       config.irq_priority = NRFX_SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
       config.orc = 	0xFF;
    //   config.frequency = 	NRF_SPI_FREQ_4M;
    //   config.mode = 	NRF_SPI_MODE_0;
    //   config.bit_order = 	NRF_SPI_BIT_ORDER_MSB_FIRST;
         
       ret_code = nrf_drv_spi_init( &SPI_flash,
    			       &config, 
    			       spi_event_handler,
    			       (void *) &SPI_flash );
       
       if( ret_code != NRF_SUCCESS )
       {
          // Handle the error
          NRF_LOG_INFO( "nrf_drv_spi_init() failure at line %d", __LINE__ );
          app_error_fault_handler( 0, 0, 0);
       }
    
    
       return;
    
    }  // end of spi_init()
    
    
    //*********************************************************************
    void 
       lp_irq_handler( 
          nrf_drv_gpiote_pin_t 			pin, 
          nrf_gpiote_polarity_t 			action)
    {
       spi_interrupt_handler( pin, action );
       return;
    }
    
    //*********************************************************************
    void 
       rp_irq_handler( 
          nrf_drv_gpiote_pin_t 			pin, 
          nrf_gpiote_polarity_t 			action)
    {
       spi_interrupt_handler( pin, action );
       return;
    }
    //*********************************************************************
    void
       spi_interrupt_handler(
          nrf_drv_gpiote_pin_t 			pin, 
          nrf_gpiote_polarity_t 			action)
    {
       if( action == NRF_GPIOTE_POLARITY_LOTOHI )
       {
          NRF_LOG_INFO("pin = %d, action = LO to HI", pin );
       }
       else if( action == NRF_GPIOTE_POLARITY_HITOLO )
       {
          NRF_LOG_INFO("pin = %d, action = HI to LO", pin );
       }
       else if( action == NRF_GPIOTE_POLARITY_TOGGLE )
       {
          NRF_LOG_INFO("pin = %d, action = Toggle", pin );
       }
       else
       {
          NRF_LOG_INFO("pin = %d, action = unknown", pin );
       }
       
       return;			 
    }
    //*********************************************************************
    void 
       spi_bootloader_enable( 
          sensor_head_id_t 			sensorHeadId ) 
    {
     
       const nrf_drv_spi_t		*spi_instance;
       
       uint8_t			tx_buf[ 10 ];
       SPI_STATUS_E			*busy_flag;
    
       
       if( sensorHeadId == SENSOR_HEAD_1A_INDEX )
       {
          spi_instance = &SPI_left;
          busy_flag = &SPI_left_port_busy;
    
       }
       else if( sensorHeadId == SENSOR_HEAD_1B_INDEX )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_right_port_busy;
    
       }
       else
       {
          spi_instance = NULL;
       }
       
       if( spi_instance != NULL )
       {
          // Set MCR to 0x00 to set RTS output hi (BOOT0=1, boot into bootloader)
          tx_buf[0] = 0x00 | (SC16IS7X0_MCR << SC16IS7X0_ADDR_SHIFT) ;	// R/W and address
          tx_buf[1] = 0x00;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          APP_ERROR_CHECK(nrf_drv_spi_transfer( spi_instance,
                                tx_buf,
                                2,
                                NULL,
                                0 ) );
          while( *busy_flag != SPI_AVAILABLE )
          {
             delay_ms( 2 );
          } 
       }
       
       return;
    } // end of spi_bootloader_enable()
    
    //*********************************************************************
    void 
       spi_bootloader_disable( 
          sensor_head_id_t 			sensorHeadId ) 
    {
     
       const nrf_drv_spi_t		*spi_instance;
       
       uint8_t			tx_buf[ 10 ];
       SPI_STATUS_E			*busy_flag;
    
       
       if( sensorHeadId == SENSOR_HEAD_1A_INDEX )
       {
          spi_instance = &SPI_left;
          busy_flag = &SPI_left_port_busy;
       }
       else if( sensorHeadId == SENSOR_HEAD_1B_INDEX )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_right_port_busy;
       }
       else
       {
          spi_instance = NULL;
       }
       
       if( spi_instance != NULL )
       {
          // Set MCR to 0x02 to set RTS output low (BOOT0=0, boot Flash)
          tx_buf[0] = 0x00 | (SC16IS7X0_MCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x02;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
                                tx_buf,
                                2,
                                NULL,
                                0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
             delay_ms( 2 );
          } 
       }
       
       return;
    }  // end of spi_bootloader_disable()
    
    //*********************************************************************
    // spi_configure_chip()
    //
    // Configure baud rate generator to 16x480kbps based on 7.680MHz clock
    // which requires a divide by 1.
    //
    // Enable RX FIFO
    //
    // Set RX FIFO interrupt level to 8 characters
    //
    // Enable RX timeout (4 character times since last received character)
    //
    //*********************************************************************
    void
       spi_configure_chip(
          const nrf_drv_spi_t		*spi_instance )
          
    {
       
       uint8_t			tx_buf[ 10 ];
       SPI_STATUS_E			*busy_flag;
       sensor_head_id_t		sensorHeadId;
       
       if( spi_instance != NULL )
       {
          if( spi_instance == &SPI_left )
          {
    	 busy_flag = &SPI_left_port_busy;
             sensorHeadId = SENSOR_HEAD_1A_INDEX;
          }
          else
          {
    	 busy_flag = &SPI_right_port_busy;
             sensorHeadId = SENSOR_HEAD_1B_INDEX;
          }
          
          // Set LCR to 0x80
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_LCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x80;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          }
          
          // Set DLL to 1
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_DLL << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x1;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          }
                
          // Set DHL to 0
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_DLH << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x0;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          }      
          
          // Set LCR to 0x03
          tx_buf[0] = SC16IS7X0_WRITE | ( SC16IS7X0_LCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x03;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          } 
       
          // Set MCR to 0x02 - Set RTS to low
          spi_bootloader_disable( sensorHeadId );
          
          // Setup FIFO
          //	- Set 0x01 to enable FIFOs
          //	- Set 0x02 to reset RX FIFO
          //	- Set 0x04 to reset TX FIFO
          //	- Set 0x00 to select 8 character level for RX FIFO interrupt
          // Set FCR to 0x07
          tx_buf[0] = SC16IS7X0_WRITE | (SC16IS7X0_FCR << SC16IS7X0_ADDR_SHIFT);	// R/W and address
          tx_buf[1] = 0x07;			// value
          *busy_flag = SPI_TX_IN_PROGRESS;
          
          nrf_drv_spi_transfer( spi_instance,
    			    tx_buf,
    			    2,
    			    NULL,
    			    0 );
          while( *busy_flag != SPI_AVAILABLE )
          {
    	 delay_ms( 2 );
          } 
       
          // RX FIFO time-out does not require setup.
              
       }
    
       return;
    } // end of spi_configure_chip()
    
    //*********************************************************************
    // spi_send()
    //
    // This routine sends data to a SPI connected device but requires
    // access to local control structures.
    //*********************************************************************
    void
       spi_send(
          uint8_t		spi_num,
          uint8_t		*data_p,
          uint8_t		length )
     {
        
       const nrf_drv_spi_t		*spi_instance;
       SPI_STATUS_E			*busy_flag;
       uint8_t			len;
       int				msg_index;
       SPI_MSG_TX_BUF_T		*buff_p;
       
       
       if( spi_num == SPI_LEFT )
       {
          spi_instance = &SPI_left;
          busy_flag = &SPI_left_port_busy;
          msg_index = spi_get_tx_buff( spi_num );
          if( msg_index < 0 )
          {
    	 spi_instance = NULL;
    	 NRF_LOG_DEBUG( "no tx buff avail at line %d in %s", 
    		        __LINE__,
    			__FILE__ );
          }
          buff_p = &(SPI_left_tx_buff[msg_index]);
          NRF_LOG_INFO( "spi_send() for Left port" );
       }
       else if( spi_num == SPI_RIGHT )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_right_port_busy;
          msg_index = spi_get_tx_buff( spi_num );
          if( msg_index < 0 )
          {
    	 spi_instance = NULL;
    	 NRF_LOG_DEBUG( "no tx buff avail at line %d in %s", 
    		        __LINE__,
    			__FILE__ );
          }
          buff_p = &(SPI_right_tx_buff[msg_index]);
          NRF_LOG_INFO( "spi_send() for Right port" );
       }
       else if( spi_num == SPI_FLASH )
       {
          spi_instance = &SPI_right;
          busy_flag = &SPI_flash_busy;
          msg_index = spi_get_tx_buff( spi_num );
          if( msg_index < 0 )
          {
    	 spi_instance = NULL;
    	 NRF_LOG_DEBUG( "no tx buff avail at line %d in %s", 
    		        __LINE__,
    			__FILE__ );
          }
          buff_p = &(SPI_flash_buff[msg_index]);
          NRF_LOG_INFO( "spi_send() for Flash" );
       }
       else
       {
          spi_instance = NULL;
          busy_flag = NULL;
       }
       
       if( spi_instance )
       {
          // No guarentee the passed in address is not on a stack
          if( length > SPI_TX_BUFFER_LEN )
          {
    	 len = SPI_TX_BUFFER_LEN;
          }
          else
          {
    	 len = length;
          }
          
          memcpy( ((uint8_t *)(buff_p->data)+1), data_p, len );
          
          buff_p->data[0] = SC16IS7X0_THR;	// set transmit holding register address
          len++;				// account for the THR address
          buff_p->bytes = len;
          buff_p->busy = SPI_TX_IN_PROGRESS;	// mark descriptor
          
          *busy_flag = SPI_TX_IN_PROGRESS;		// mark hardware
          nrf_drv_spi_transfer( spi_instance,
    			    buff_p->data,	// tx ptr
    			    len,		// tx len
    			    NULL,		// rx ptr
    			    0 );		// rx len
       }
    
        return;
     } // end of spi_send()
    
    //*********************************************************************
    // spi_get_tx_buff()
    //
    // Return the index of a buffer descriptor or -1 if no descriptors are
    // available on the specified port
    //*********************************************************************
    int
       spi_get_tx_buff( uint8_t port )
    {
       int		ret_index;
       
       if( port == SPI_LEFT )
       {
          if( SPI_left_tx_buff[SPI_left_tx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_left_tx_enq_index;
    	 if( SPI_left_tx_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_left_tx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_RIGHT )
       {
          if( SPI_right_tx_buff[SPI_right_tx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_right_tx_enq_index;
    	 if( SPI_right_tx_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_right_tx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_FLASH )
       {
          if( SPI_flash_buff[SPI_flash_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_flash_enq_index;
    	 if( SPI_flash_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_flash_enq_index = 0;
    	 }
          }
       }
       else
       {
          ret_index = -1;
       }
       
       return( ret_index );
    }  // end of spi_get_tx_buff()
    
    //*********************************************************************
    // spi_get_rx_buff()
    //
    // Return the index of a buffer descriptor or -1 if no descriptors are
    // available on the specified port
    //*********************************************************************
    int
       spi_get_rx_buff( uint8_t port )
    {
       int		ret_index;
       
       if( port == SPI_LEFT )
       {
          if( SPI_left_rx_buff[SPI_left_rx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_left_rx_enq_index;
    	 if( SPI_left_rx_enq_index > SPI_RX_BUFFERS )
    	 {
    	    SPI_left_rx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_RIGHT )
       {
          if( SPI_right_rx_buff[SPI_right_rx_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_right_rx_enq_index;
    	 if( SPI_right_rx_enq_index > SPI_RX_BUFFERS )
    	 {
    	    SPI_right_rx_enq_index = 0;
    	 }
          }
       }
       else if( port == SPI_FLASH )
       {
          if( SPI_flash_buff[SPI_flash_enq_index].busy != SPI_AVAILABLE )
          {
    	 ret_index = -1;
          }
          else
          {
    	 ret_index = ++SPI_flash_enq_index;
    	 if( SPI_flash_enq_index > SPI_TX_BUFFERS )
    	 {
    	    SPI_flash_enq_index = 0;
    	 }
          }
       }
       else
       {
          ret_index = -1;
       }
       
       return( ret_index );
    }  // end of spi_get_rx_buff()
    
    //*********************************************************************
    // spi_free_tx_buff()
    //
    // Release a buffer from the specified port
    //*********************************************************************
    void
       spi_free_tx_buff(
          uint8_t		port,
          int		index )
    {
    
       if( index < SPI_TX_BUFFERS )
       {
          if( port == SPI_LEFT )
          {
    	 SPI_left_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_left_tx_buff[index].bytes = 0;
    	 memset( SPI_left_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else if( port == SPI_RIGHT )
          {
    	 SPI_right_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_right_tx_buff[index].bytes = 0;
    	 memset( SPI_right_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else if( port == SPI_FLASH )
          {
    	 SPI_flash_buff[index].busy = SPI_AVAILABLE;
    	 SPI_flash_buff[index].bytes = 0;
    	 memset( SPI_flash_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "Wrong port at line %s in %d", __LINE__, __FILE__ );
          }
       }
       else
       {
          NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
       }
       
       return;
    }// spi_free_tx_buff()
    	    
    //*********************************************************************
    // spi_free_rx_buff()
    //
    // Release a buffer from the specified port
    //*********************************************************************
    void
       spi_free_rx_buff(
          uint8_t		port,
          int		index )
    {
    
       if( port == SPI_LEFT )
       {
          if( index < SPI_RX_BUFFERS )
          {
    	 SPI_left_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_left_tx_buff[index].bytes = 0;
    	 memset( SPI_left_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
          }
       }
       else if( port == SPI_RIGHT )
       {
          if( index < SPI_RX_BUFFERS )
          {
    	 
    	 SPI_right_tx_buff[index].busy = SPI_AVAILABLE;
    	 SPI_right_tx_buff[index].bytes = 0;
    	 memset( SPI_right_tx_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
          }
       }
       else if( port == SPI_FLASH )
       {
          if( index < SPI_TX_BUFFERS )	// Flash uses TX size
          {
    	 SPI_flash_buff[index].busy = SPI_AVAILABLE;
    	 SPI_flash_buff[index].bytes = 0;
    	 memset( SPI_flash_buff[index].data,
    		0,
    		SPI_TX_BUFFER_LEN );
          }
          else
          {
    	 NRF_LOG_DEBUG( "index too large at line %d in %d", __LINE__, __FILE__ );
          }
       }
       else
       {
          NRF_LOG_DEBUG( "Wrong port at line %s in %d", __LINE__, __FILE__ );
       }
       
       return;
    }// spi_free_rx_buff()
    	    
    //*********************************************************************
    // spi_rx_msg_queued()
    //
    // Get a count of the number of spi rx messages queued
    //*********************************************************************
    uint8_t
       spi_rx_msg_queued(
          uint8_t			port )
    {
       uint8_t		msg_count;
       
       msg_count = 0;
       
       
       
       
       return( msg_count );
    } // end of spi_rx_msg_queued()
    				     
       
    //  end of file spi.c

    84487.sdk_config.h

    3683.main.h

Children
No Data
Related