This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

I2C clock frequency problem

Hi,

I am using NRF52832 development board , to which i have interfaced LIS3DSH accelerometer sensor(3.3V i2c)

when i  configure it for 1600 sampling rate and all the axis enabled , i am not able to get any data .

could anyone help with this problem.

also the I2c clock frequency, as shown in below image, while i am capturing data when i observe in oscilloscope or logic analyzer , clock frequency is showing 200 all the setting is for 400KHz.

what could be the problem for this or is there any other way i need to follow to set the clock to 400KHz.

help me ASAP...

Thank you

Parents Reply Children
  • ok , like i am configuring I2c fast  for acquiring acceleration data from  lis3dsh accelerometer sensor, as it is shown in the image , i have set clock frequency to 400 kHz

    but output i am able to get is 200kHz at oscilloscope as well as in logic analyzer.

    i want  a clock frequency 400Khz for this application, so help how to configure in any other ways.

  • We need that logic analyzer scope

    What he means is that he needs you to post the trace from the oscilloscope.

    Use your oscilloscope's screenshot facility - not a photo!

    Also - how to properly post source code:

  • logic analyzer output for clock and data line, for above set clock frequency of 400 Khz 

  • /**
     * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
     * 
     * All rights reserved.
     * 
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     * 
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     * 
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     * 
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     * 
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     * 
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     * 
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     * 
     */
    
    #include "our_service.h"
    
    #include <stdbool.h>
    #include <stdint.h>
    #include <string.h>
    
    
    #include "nordic_common.h"
    #include "nrf.h"
    #include "app_error.h"
    #include "ble.h"
    #include "ble_hci.h"
    #include "ble_srv_common.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "app_timer.h"
    #include "fds.h"
    #include "peer_manager.h"
    #include "bsp_btn_ble.h"
    #include "sensorsim.h"
    #include "ble_conn_state.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "nrf_pwr_mgmt.h"
    #include "nrf_uart.h"
    //#include <float.h>
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    #include "app_uart.h"
    #include "our_service.h"
    #include "nrf_drv_rtc.h"
    #include "nrf_drv_clock.h"
    
    //for accelerometer
    #include "nrf_drv_twi.h"
    #include "LIS3DSH.h"
    #include "nrf_delay.h"
    #include "FFT.h"
    #include "app_util_bds.h"
    
    
    
    #define DEVICE_NAME                     "GVR LIS3DSH_2"                       /**< Name of device. Will be included in the advertising data. */
    #define MANUFACTURER_NAME               "NordicSemiconductor"                   /**< Manufacturer. Will be passed to Device Information Service. */
    #define APP_ADV_INTERVAL                100                                     /**< The advertising interval (in units of 0.625 ms. This value corresponds to 187.5 ms). */
    
    #define APP_ADV_DURATION                0                                  /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    #define APP_BLE_OBSERVER_PRIO           3                                       /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    #define APP_BLE_CONN_CFG_TAG            1                                       /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(8, UNIT_1_25_MS)        /**< Minimum acceptable connection interval (0.1 seconds). */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(15, UNIT_1_25_MS)        /**< Maximum acceptable connection interval (0.2 second). */
    #define SLAVE_LATENCY                   0                                       /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)         /**< Connection supervisory timeout (4 seconds). */
    
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                   /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                  /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                       /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define SEC_PARAM_BOND                  1                                       /**< Perform bonding. */
    #define SEC_PARAM_MITM                  0                                       /**< Man In The Middle protection not required. */
    #define SEC_PARAM_LESC                  0                                       /**< LE Secure Connections not enabled. */
    #define SEC_PARAM_KEYPRESS              0                                       /**< Keypress notifications not enabled. */
    #define SEC_PARAM_IO_CAPABILITIES       BLE_GAP_IO_CAPS_NONE                    /**< No I/O capabilities. */
    #define SEC_PARAM_OOB                   0                                       /**< Out Of Band data not available. */
    #define SEC_PARAM_MIN_KEY_SIZE          7                                       /**< Minimum encryption key size. */
    #define SEC_PARAM_MAX_KEY_SIZE          16                                      /**< Maximum encryption key size. */
    
    #define DEAD_BEEF                       0xDEADBEEF                              /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    //#define SAMPLE_NUMBER  1*1600
    #define PACKET_SIZE  12
    
    
    
    NRF_BLE_GATT_DEF(m_gatt);                                                       /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                         /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                             /**< Advertising module instance. */
    //#define I2C_MEMS_SENSOR_BUS_ADDRESS 0x1e
    static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID;                        /**< Handle of the current connection. */
    extern bool wr_flag ;
    extern bool Notify_flag ;
    int16_t index = 0;
    uint16_t wakeup = 0;
    // FROM_SERVICE_TUTORIAL: Declare a service structure for our application
    ble_os_t m_our_service;
    
    #define APP_ERROR_CHECK1(ERR_CODE)                    \
            if (ERR_CODE != NRF_SUCCESS)                  \
            {                                              \
            	return ERR_CODE;                            \
            }
    
    
    
    // OUR_JOB: Step 3.G, Declare an app_timer id variable and define our timer interval and define a timer interval
    
    #define COMPARE_COUNTERTIME  (10UL)                                        /**< Get Compare event COMPARE_TIME seconds after the counter starts from 0. */
    
    #ifdef BSP_LED_0
        #define TICK_EVENT_OUTPUT     BSP_LED_2                                 /**< Pin number for indicating tick event. */
    #endif
    #ifndef TICK_EVENT_OUTPUT
        #error "Please indicate output pin"
    #endif
    #ifdef BSP_LED_1
        #define COMPARE_EVENT_OUTPUT   BSP_LED_1                                /**< Pin number for indicating compare event. */
    #endif
    #ifndef COMPARE_EVENT_OUTPUT
        #error "Please indicate output pin"
    #endif
    
    const nrf_drv_rtc_t rtc = NRF_DRV_RTC_INSTANCE(2); /**< Declaring an instance of nrf_drv_rtc for RTC0. */
    
    /** @brief: Function for handling the RTC0 interrupts.
     * Triggered on TICK and COMPARE0 match.
     */
    static void rtc_handler(nrf_drv_rtc_int_type_t int_type)
    {
        if (int_type == NRF_DRV_RTC_INT_COMPARE0)
        {
       
        int temp=nrf_drv_rtc_counter_get   (&rtc)    ;
    printf("current value is=%d\r\n",temp/8);
            
            nrf_gpio_pin_toggle(COMPARE_EVENT_OUTPUT);
    
            nrf_drv_rtc_counter_clear(&rtc);
            nrf_drv_rtc_int_enable(&rtc, NRF_RTC_INT_COMPARE0_MASK); 
    
            printf("%d\n", NRF_RTC2->COUNTER);
        }
        else if (int_type == NRF_DRV_RTC_INT_TICK)
        {
         
            nrf_gpio_pin_toggle(TICK_EVENT_OUTPUT);
    //        printf("%d\n", NRF_RTC0->COUNTER);
        }
    }
    
    
    
    
    
    
    
    
    // Use UUIDs for service(s) used in your application.
    static ble_uuid_t m_adv_uuids[] =                                               /**< Universally unique service identifiers. */
    {
        {BLE_UUID_OUR_SERVICE_UUID, BLE_UUID_TYPE_VENDOR_BEGIN}
    };
    
    
    static void advertising_start(bool erase_bonds);
    
    
    /**@brief Callback function for asserts in the SoftDevice.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyze
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num   Line number of the failing ASSERT call.
     * @param[in] file_name  File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    
    
    // ALREADY_DONE_FOR_YOU: This is a timer event handler
    //static void timer_timeout_handler(void * p_context)
    //{
    //    // OUR_JOB: Step 3.F, Update temperature and characteristic value.
    
    //}
    #define MAX_TEST_DATA_BYTES     (15U)                /**< max number of test bytes to be used for tx and rx. */
    #define UART_TX_BUF_SIZE 256                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE 256                         /**< UART RX buffer size. */
    
    
    
    /**@brief Function for handling Peer Manager events.
     *
     * @param[in] p_evt  Peer Manager event.
     */
    static void pm_evt_handler(pm_evt_t const * p_evt)
    {
        ret_code_t err_code;
    
        switch (p_evt->evt_id)
        {
            case PM_EVT_BONDED_PEER_CONNECTED:
            {
                NRF_LOG_INFO("Connected to a previously bonded device.");
            } break;
    
            case PM_EVT_CONN_SEC_SUCCEEDED:
            {
                NRF_LOG_INFO("Connection secured: role: %d, conn_handle: 0x%x, procedure: %d.",
                             ble_conn_state_role(p_evt->conn_handle),
                             p_evt->conn_handle,
                             p_evt->params.conn_sec_succeeded.procedure);
            } break;
    
            case PM_EVT_CONN_SEC_FAILED:
            {
                /* Often, when securing fails, it shouldn't be restarted, for security reasons.
                 * Other times, it can be restarted directly.
                 * Sometimes it can be restarted, but only after changing some Security Parameters.
                 * Sometimes, it cannot be restarted until the link is disconnected and reconnected.
                 * Sometimes it is impossible, to secure the link, or the peer device does not support it.
                 * How to handle this error is highly application dependent. */
            } break;
    
            case PM_EVT_CONN_SEC_CONFIG_REQ:
            {
                // Reject pairing request from an already bonded peer.
                pm_conn_sec_config_t conn_sec_config = {.allow_repairing = false};
                pm_conn_sec_config_reply(p_evt->conn_handle, &conn_sec_config);
            } break;
    
            case PM_EVT_STORAGE_FULL:
            {
                // Run garbage collection on the flash.
                err_code = fds_gc();
                if (err_code == FDS_ERR_NO_SPACE_IN_QUEUES)
                {
                    // Retry.
                }
                else
                {
                    APP_ERROR_CHECK(err_code);
                }
            } break;
    
            case PM_EVT_PEERS_DELETE_SUCCEEDED:
            {
                advertising_start(false);
            } break;
    
            case PM_EVT_PEER_DATA_UPDATE_FAILED:
            {
                // Assert.
                APP_ERROR_CHECK(p_evt->params.peer_data_update_failed.error);
            } break;
    
            case PM_EVT_PEER_DELETE_FAILED:
            {
                // Assert.
                APP_ERROR_CHECK(p_evt->params.peer_delete_failed.error);
            } break;
    
            case PM_EVT_PEERS_DELETE_FAILED:
            {
                // Assert.
                APP_ERROR_CHECK(p_evt->params.peers_delete_failed_evt.error);
            } break;
    
            case PM_EVT_ERROR_UNEXPECTED:
            {
                // Assert.
                APP_ERROR_CHECK(p_evt->params.error_unexpected.error);
            } break;
    
            case PM_EVT_CONN_SEC_START:
            case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED:
            case PM_EVT_PEER_DELETE_SUCCEEDED:
            case PM_EVT_LOCAL_DB_CACHE_APPLIED:
            case PM_EVT_LOCAL_DB_CACHE_APPLY_FAILED:
                // This can happen when the local DB has changed.
            case PM_EVT_SERVICE_CHANGED_IND_SENT:
            case PM_EVT_SERVICE_CHANGED_IND_CONFIRMED:
            default:
                break;
        }
    }
    
    
    
    /**@brief Function for the Timer initialization.
     *
     * @details Initializes the timer module. This creates and starts application timers.
     */
    static void timers_init(void)
    {
        // Initialize timer module.
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    
    
        // OUR_JOB: Step 3.H, Initiate our timer
    		
    }
    
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the
     *          device including the device name, appearance, and the preferred connection parameters.
     */
    static void gap_params_init(void)
    {
        ret_code_t              err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *)DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for initializing the GATT module.
     */
    static void gatt_init(void)
    {
        ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
    
    	
    	uint32_t         err_code;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        //FROM_SERVICE_TUTORIAL: Add code to initialize the services used by the application.
        our_service_init(&m_our_service);
    
    }
    
    
    /**@brief Function for handling the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module which
     *          are passed to the application.
     *          @note All this function does is to disconnect. This could have been done by simply
     *                setting the disconnect_on_fail config parameter, but instead we use the event
     *                handler mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        ret_code_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling a Connection Parameters error.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        ret_code_t             err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for starting timers.
     */
    static void application_timers_start(void)
    {
    
        // OUR_JOB: Step 3.I, Start our timer
    		
    
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        ret_code_t err_code;
    
        err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        ret_code_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_DIRECTED_HIGH_DUTY:
                NRF_LOG_INFO("Directed advertising.");
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_DIRECTED);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_ADV_EVT_FAST:
                NRF_LOG_INFO("Fast advertising.");
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_ADV_EVT_SLOW:
                NRF_LOG_INFO("Slow advertising.");
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_SLOW);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_ADV_EVT_FAST_WHITELIST:
                NRF_LOG_INFO("Fast advertising with whitelist.");
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_ADV_EVT_SLOW_WHITELIST:
                NRF_LOG_INFO("Slow advertising with whitelist.");
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST);
                APP_ERROR_CHECK(err_code);
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_ADV_EVT_IDLE:
                err_code = bsp_indication_set(BSP_INDICATE_IDLE);
                APP_ERROR_CHECK(err_code);
                sleep_mode_enter();
                break;
    
            case BLE_ADV_EVT_WHITELIST_REQUEST:
            {
                ble_gap_addr_t whitelist_addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
                ble_gap_irk_t  whitelist_irks[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
                uint32_t       addr_cnt = BLE_GAP_WHITELIST_ADDR_MAX_COUNT;
                uint32_t       irk_cnt  = BLE_GAP_WHITELIST_ADDR_MAX_COUNT;
    
                err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt,
                                            whitelist_irks,  &irk_cnt);
                APP_ERROR_CHECK(err_code);
                NRF_LOG_DEBUG("pm_whitelist_get returns %d addr in whitelist and %d irk whitelist",
                               addr_cnt,
                               irk_cnt);
    
                // Apply the whitelist.
                err_code = ble_advertising_whitelist_reply(&m_advertising,
                                                           whitelist_addrs,
                                                           addr_cnt,
                                                           whitelist_irks,
                                                           irk_cnt);
                APP_ERROR_CHECK(err_code);
            }
            break;
    
    
            default:
                break;
        }
    }
    
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        ret_code_t err_code = NRF_SUCCESS;
    		
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected.");
                 index = 0;
                // LED indication will be changed when advertising starts.
     
    
                break;
    
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected.");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
    
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                NRF_LOG_DEBUG("GATT Client Timeout.");
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                NRF_LOG_DEBUG("GATT Server Timeout.");
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    
    		
    }
    
    
    /**@brief Function for initializing the BLE stack.
     *
     * @details Initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
        NRF_SDH_BLE_OBSERVER(m_our_service_observer, APP_BLE_OBSERVER_PRIO, ble_our_service_on_ble_evt, (void*) &m_our_service);
    
        //OUR_JOB: Step 3.C Call ble_our_service_on_ble_evt() to do housekeeping of ble connections related to our service and characteristics
    	
    	
    		
    
    	
    }
    
    
    /**@brief Function for the Peer Manager initialization.
     */
    static void peer_manager_init(void)
    {
        ble_gap_sec_params_t sec_param;
        ret_code_t           err_code;
    
        err_code = pm_init();
        APP_ERROR_CHECK(err_code);
    
        memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));
    
        // Security parameters to be used for all security procedures.
        sec_param.bond           = SEC_PARAM_BOND;
        sec_param.mitm           = SEC_PARAM_MITM;
        sec_param.lesc           = SEC_PARAM_LESC;
        sec_param.keypress       = SEC_PARAM_KEYPRESS;
        sec_param.io_caps        = SEC_PARAM_IO_CAPABILITIES;
        sec_param.oob            = SEC_PARAM_OOB;
        sec_param.min_key_size   = SEC_PARAM_MIN_KEY_SIZE;
        sec_param.max_key_size   = SEC_PARAM_MAX_KEY_SIZE;
        sec_param.kdist_own.enc  = 1;
        sec_param.kdist_own.id   = 1;
        sec_param.kdist_peer.enc = 1;
        sec_param.kdist_peer.id  = 1;
    
        err_code = pm_sec_params_set(&sec_param);
        APP_ERROR_CHECK(err_code);
    
        err_code = pm_register(pm_evt_handler);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Clear bond information from persistent storage.
     */
    static void delete_bonds(void)
    {
        ret_code_t err_code;
    
        NRF_LOG_INFO("Erase bonds!");
    
        err_code = pm_peers_delete();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated when button is pressed.
     */
    static void bsp_event_handler(bsp_event_t event)
    {
        ret_code_t err_code;
    
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break; // BSP_EVENT_SLEEP
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break; // BSP_EVENT_DISCONNECT
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break; // BSP_EVENT_KEY_0
            case BSP_EVENT_KEY_2:
             err_code = bsp_indication_set( BSP_INDICATE_USER_STATE_1);
        APP_ERROR_CHECK(err_code);
            printf("key3 pressed\n");
            err_code = bsp_indication_set( BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
            
    
            break;
    
            default:
                break;
        }
    }
    
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        ret_code_t             err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type               = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance      = true;
        init.advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
        init.config.ble_adv_whitelist_enabled          = true;
        init.config.ble_adv_directed_high_duty_enabled = true;
    
    
    	
    		init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    		init.srdata.uuids_complete.p_uuids = m_adv_uuids;
    		
    	
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        ret_code_t err_code;
        bsp_event_t startup_event;
    
        err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    static void idle_state_handle(void)
    {
        if (NRF_LOG_PROCESS() == false)
        {
            nrf_pwr_mgmt_run();
        }
    }
    
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(bool erase_bonds)
    {
        if (erase_bonds == true)
        {
            delete_bonds();
            // Advertising is started by PM_EVT_PEERS_DELETED_SUCEEDED event
        }
        else
        {
            ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    
            APP_ERROR_CHECK(err_code);
        }
    }
    
    #define APP_ERROR_CHECK1(ERR_CODE)                    \
            if (ERR_CODE != NRF_SUCCESS)                  \
            {                                              \
            	return ERR_CODE;                            \
            }
    
    
    /* TWI instance ID. */
    #if TWI0_ENABLED
    #define TWI_INSTANCE_ID     0
    #elif TWI1_ENABLED
    #define TWI_INSTANCE_ID     1
    #endif
    
     /* Number of possible TWI addresses. */
     #define TWI_ADDRESSES      127
    
    
     //#define MEMS_SENSOR_WHO_AM_I_ADDR      0x0F
    
    /* TWI instance. */
    static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(0);
    
    ret_code_t err_code = NRF_SUCCESS;
    
    uint16_t sampleCntTracker = 0x00;
    
    
    
    //typedef struct
    //{
    //   float fReal;
    //   float fImag;
    //}stXComplex;
    
    
    #include <math.h>
    
    int16_t x_axis_data[SAMPLE_NUMBER] = {0x00};
    int16_t y_axis_data[SAMPLE_NUMBER] = {0x00};
    int16_t z_axis_data[SAMPLE_NUMBER] = {0x00};
    
    
    /**
     * @brief TWI initialization.
     */
    void twi_init (void)
    {
        ret_code_t err_code;
    
        const nrf_drv_twi_config_t twi_config = {
           .scl                = ARDUINO_SCL_PIN,
           .sda                = ARDUINO_SDA_PIN,
           .frequency          = NRF_DRV_TWI_FREQ_400K,
           .interrupt_priority = APP_IRQ_PRIORITY_HIGH,
           .clear_bus_init     = true
        };
    NRF_GPIO->PIN_CNF[ARDUINO_SDA_PIN] |= (GPIO_PIN_CNF_PULL_Pullup << GPIO_PIN_CNF_PULL_Pos);
    NRF_GPIO->PIN_CNF[ARDUINO_SCL_PIN] |= (GPIO_PIN_CNF_PULL_Pullup << GPIO_PIN_CNF_PULL_Pos);
        err_code = nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL);
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_twi_enable(&m_twi);
    }
    
    ret_code_t readFromlis3dsh(uint8_t reg, uint8_t* p_dest, uint8_t bytes)
    {
        ret_code_t err = NRF_SUCCESS;
        err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, &reg, sizeof(reg), false);
        APP_ERROR_CHECK1(err);
        err = nrf_drv_twi_rx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, p_dest, bytes);
        APP_ERROR_CHECK1(err);
        return NRF_SUCCESS;
    }
    
    ret_code_t writeTolis3dsh(uint8_t* const data, uint8_t bytes)
    {
        ret_code_t err = NRF_SUCCESS;
        err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, data, sizeof(data), false);
        APP_ERROR_CHECK1(err);
        return NRF_SUCCESS;
    }
    
    bool verifyLis3dshAccelerometer()
    {
        uint8_t verify = 0x00;
        readFromlis3dsh(MEMS_SENSOR_WHO_AM_I_ADDR, &verify, sizeof(verify));
        if(verify == MEMS_SENSOR_WHO_AM_I_VALUE)
        {
            return true;
        }
        return false;
    }
    
    ret_code_t noOfSamplesStoredinfifo(uint8_t* samplesCnt)
    {
        ret_code_t err = NRF_SUCCESS;
        err = readFromlis3dsh(MEMS_SENSOR_FIFO_SRC_ADDR, samplesCnt, sizeof(uint8_t));
        APP_ERROR_CHECK(err);
    }
    
    ret_code_t wakeUpStateMachineConfiguration()
    {
        ret_code_t err = NRF_SUCCESS;
        uint8_t toSend[2] = {0x00};
    
        toSend[0] = MEMS_SENSOR_CTRL_REG1_ADDR;
        toSend[1] = 0x01;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
        toSend[1] = 0x48;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
        toSend[1] = 0x97;/* 1.6k sampling rate is selected*/
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
        toSend[1] = 0x00;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = THRS1_1;
        toSend[1] = 0x65;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = ST1_1;
        toSend[1] = 0x05;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = ST1_2;
        toSend[1] = 0x11;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = MASK1_B;
        toSend[1] = 0xFC;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = MASK1_A;
        toSend[1] = 0xFC;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        toSend[0] = SETT1;
        toSend[1] = 0x01;
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        /* FIFO mode selection */
        memset(toSend, 0x00, sizeof(toSend));
        toSend[0] = MEMS_SENSOR_CTRL_REG6_ADDR;
        toSend[1] |= (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT);
        err = writeTolis3dsh(toSend, sizeof(toSend));
        APP_ERROR_CHECK1(err);
    
        return NRF_SUCCESS;
    }
    
    int16_t two_compl_to_int16(uint16_t two_compl_value)
    {
        int16_t int16_value = 0;
    
        /* conversion */
        if (two_compl_value > 32768) {
            int16_value = (int16_t)(-(((~two_compl_value) & (uint16_t)(0xFFFF)) + (uint16_t)(1)));
        } else {
            int16_value = (int16_t)(two_compl_value);
        }
    
        return int16_value;
    }
    
    
    ret_code_t ReadOutputRegistersOfAccelerometerNew()
    {
        ret_code_t err = NRF_SUCCESS;
        uint8_t vibData[120] = {0x00};
    
        err = readFromlis3dsh(MEMS_SENSOR_OUT_X_L_ADDR, &vibData[0], sizeof(vibData));
        APP_ERROR_CHECK(err);
    
        for(uint16_t i = 0, j = 0; (j < SAMPLE_READ_ONE_ITERATION) && (i < (uint16_t)(SAMPLE_READ_ONE_ITERATION*6)) ; i = (uint16_t)(i+6), j++)
        {
            x_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+1]<<8) | (uint16_t)vibData[i]);
            y_axis_data[sampleCntTracker + j]= two_compl_to_int16(((uint16_t)vibData[i+3]<<8) | (uint16_t)vibData[i+2]);
            z_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+5]<<8) | (uint16_t)vibData[i+4]);
    
            x_axis_data[sampleCntTracker + j] = (int16_t)(x_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
            y_axis_data[sampleCntTracker + j] = (int16_t)(y_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
            z_axis_data[sampleCntTracker + j] = (int16_t)(z_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
        }
    
        sampleCntTracker = (uint16_t)(sampleCntTracker + SAMPLE_READ_ONE_ITERATION);
        return NRF_SUCCESS;
    }
    
    //uint32_t timeCapture = 0x00;
    //uint32_t time_ticks = 0x00;
    //const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0);
    
    //void startTimer()
    //{
    //    uint32_t time_ms = 8000; //Time(in miliseconds) between consecutive compare events.
    //    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    //    err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, NULL);
    //    APP_ERROR_CHECK(err_code);
    //    time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms);
    //
    //    nrf_drv_timer_extended_compare(
    //         &TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);
    //    nrf_drv_timer_enable(&TIMER_LED);    
    //}
    
    ret_code_t accelerometerDataAcquisition_SR_1_6_0_0(uint16_t sampleCount)
    {
        ret_code_t err = NRF_SUCCESS;
        uint8_t fifoSamples = 0x00;
    
        //startTimer();
        //nrf_delay_ms(50);
        //timeCapture = nrfx_timer_capture(&TIMER_LED, 0);
        //nrf_delay_us(ACC_DELAY_2_0);
        //nrf_delay_us(10000);
        //startTimer();
    
        nrf_delay_us(ACC_DELAY_2_0);
        err = noOfSamplesStoredinfifo(&fifoSamples);
        APP_ERROR_CHECK1(err);
        for(uint16_t it_cnt = 0x00; it_cnt < (sampleCount)/20; it_cnt++)
        {
            if(it_cnt)
            {
                nrf_delay_us(SEC_IT_DELAY_ODR_1_6_0_0);
            }
            err = ReadOutputRegistersOfAccelerometerNew();
            APP_ERROR_CHECK1(err);
        }
          
        return NRF_SUCCESS;
    }
    
    //void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
    //{
    //    APP_ERROR_CHECK(NRF_LOG_INIT(NULL));
    //    NRF_LOG_DEFAULT_BACKENDS_INIT();
    //    NRF_LOG_INFO("INTERRUPT OCCURED");
    //    NRF_LOG_FLUSH();
    //}
    
    //ret_code_t wakeUpStateMachineInterruptConfiguration(void)
    //{
    //    ret_code_t err = NRF_SUCCESS;
    //    nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true);
    //    in_config.pull = NRF_GPIO_PIN_PULLUP;
    //    err = nrf_drv_gpiote_in_init(WAKE_UP_INT_PIN, &in_config, in_pin_handler);
    //    APP_ERROR_CHECK1(err);    
    //    nrf_drv_gpiote_in_event_enable(WAKE_UP_INT_PIN, true);
    //    return err;
    //}
    
    
    
    //void timer_initializations()
    //{
    //
    //
    //    
    //}
    
    
    //const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0);
    
    int8_t address = 0x00;
    
    ret_code_t configureLis3dshAccelerometer()
    {
        ret_code_t err = NRF_SUCCESS;
        uint8_t reg[2] = {0x00}, test;
        reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
        reg[1] |= DATARATE_1600;
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
    
        reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
        reg[1] |= XYZ_ENABLE;
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
        
        err = readFromlis3dsh(MEMS_SENSOR_CTRL_REG4_ADDR, &test ,1);
        APP_ERROR_CHECK(err);
    
    
    
        reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
        reg[1] = 0x00;
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
    
    
        reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
        reg[1] |= FILTER_BW_800;
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
    
        reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
        reg[1] |= FULLSCALE_2;
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
    
        reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
        reg[1] |= (0x02 | SERIALINTERFACE_4WIRE);
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
    
        reg[0] = MEMS_SENSOR_CTRL_REG6_ADDR;
        reg[1] |= (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT);
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
        
        reg[0] = MEMS_SENSOR_FIFO_CTRL_ADDR;
        //reg[1] |= FIFO_STREAM_MODE;
        reg[1]  = 0x54;
        err = writeTolis3dsh(&reg[0], sizeof(reg));
        APP_ERROR_CHECK(err);
    //    uint8_t no = 0x00;   
    //    err = noOfSamplesStoredinfifo(&no);
    //    APP_ERROR_CHECK(err);
    }
    
    void uart_error_handle(app_uart_evt_t * p_event)
    {
        if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR)
        {
            APP_ERROR_HANDLER(p_event->data.error_communication);
        }
        else if (p_event->evt_type == APP_UART_FIFO_ERROR)
        {
            APP_ERROR_HANDLER(p_event->data.error_code);
        }
    }
    /**@snippet [Handling the data received over UART] */
    
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER,
            .tx_pin_no    = TX_PIN_NUMBER,
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_error_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    }
    /**@snippet [UART Initialization] */
    
    #define UART_HWFC APP_UART_FLOW_CONTROL_ENABLED
    uint8_t data1 = 0x0F;  
    
    static void lfclk_config(void)
    {
        ret_code_t err_code = nrf_drv_clock_init();
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_clock_lfclk_request(NULL);
    }
    
    
    
    
    static void rtc_config(void)
    {
        uint32_t err_code;
    
        //Initialize RTC instance
        nrf_drv_rtc_config_t config = NRF_DRV_RTC_DEFAULT_CONFIG;
        config.prescaler = 4095;
        err_code = nrf_drv_rtc_init(&rtc, &config, rtc_handler);
        APP_ERROR_CHECK(err_code);
    
        //Enable tick event & interrupt
        nrf_drv_rtc_tick_enable(&rtc,true);
    
        //Set compare channel to trigger interrupt after COMPARE_COUNTERTIME seconds
        err_code = nrf_drv_rtc_cc_set(&rtc,0,COMPARE_COUNTERTIME * 8,true);
        APP_ERROR_CHECK(err_code);
    
        //Power on RTC instance
        nrf_drv_rtc_enable(&rtc);
    }
    
    
    
    
    int main(void)
    {
        bool erase_bonds;
    //    uart_init()
        ret_code_t err = NRF_SUCCESS;
        uint16_t length = 0x00;
         // Initialize.
        log_init();
        timers_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
        peer_manager_init();
        NRF_LOG_INFO("\tSensor Module acquisition started.,\n");
        twi_init();
         //lfclk_config();
    
        //rtc_config();
       
        char Buffer[50];
    
        bool detected_device = verifyLis3dshAccelerometer();
        if(!detected_device)
        {
              return 0;
        }
        
     
        err = configureLis3dshAccelerometer();
        APP_ERROR_CHECK(err);
        //printf("Sensor Module acquisition started.");
        err = accelerometerDataAcquisition_SR_1_6_0_0(SAMPLE_NUMBER);
        APP_ERROR_CHECK(err);
        NRF_LOG_INFO("\tX\tY\tZ");
         bsp_indication_set(6);
    
    
        for(int i = 0 ; i < 10 ; i++)
        {
            NRF_LOG_INFO("\t%d\t%d\t%d",x_axis_data[i],y_axis_data[i],z_axis_data[i]);
            NRF_LOG_FLUSH();
        
        }
        int temp1,temp2;
        bsp_indication_set(0);
        // Start execution.
        printf("GVR Sensor Moule Advertising.....");
        //advertising_start(erase_bonds);
        int temp;
       
    
        // Enter main loop.   Raw Data
        for (;;)
        {
         
           
           idle_state_handle();
    
    
        }
    }
    
    

    c code

Related