Hi
AfterI updated the nrf_Connect v2.02 IOS version. I found that disconnect will happen when key in the bonding code "123456".
And my code never has this issus with previous app version ( I forgot which version number, but the APP interface is totall difference with this v2.02)
I also tried my code with Android nrf_Conect v4.23, it works fine when bonding, no disconnect happend.
I would like to know is't a APP issue or my code's problem. Thanks.
my cellphone is iPhone 6S, ios version is 12.4.1
attaced is my main.c file. it;s modified from ble_uart sample code.
/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ #include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_timer.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #include "bsp.h" //BRN #include <nrf_delay.h> #include "app_pwm.h" #include <nrfx_timer.h> #include "nrf_drv_pwm.h" #include "ble_srv_common.h" #include "nrf_dfu_ble_svci_bond_sharing.h" #include "nrf_svci_async_function.h" #include "nrf_svci_async_handler.h" #include "ble_dfu.h" #include "peer_manager.h" #include "fds.h" #include "ble_conn_state.h" #include "ble.h" #include "nrf_bootloader_info.h" #include "nrf_drv_clock.h" #include "nrf_power.h" #include "nrf_sdh.h" #include "nrf_sdh_ble.h" #include "nrf_fstorage_sd.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_drv_saadc.h" #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define DEVICE_NAME "V015" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 6000//18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define TX_POWER_LEVEL (0) //BRN #define STATIC_PASSKEY "123456" static ble_opt_t m_static_pin_option; //BRN #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 1 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 0 /**< LE Secure Connections not enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_DISPLAY_ONLY //BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define BEEP_PIN 14 #define MOTOR_PIN 7 #define LED_PIN 12 #define KEY_PIN 11 #define YP_PIN 29 #define USB_DET_PIN 8 #define HALL_PWR_PIN 31 #define HALL_OUT_PIN 6 #define BAT_VOL_PIN 30 #define LED_ST_OFF 0 #define LED_ST_SLOW_BLINK 1 #define LED_ST_ON 2 #define LED_ST_FAST_BLINK 3 #define INIT_BAT_PWM 200 #define INIT_USB_PWM 200 #define AUTO_OFF_TIME 900 BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ //APP_TIMER_DEF(m_app_10ms_tmr); //BRN APP_TIMER_DEF(m_app_1ms_tmr); //BRN static volatile bool ready_flag; // A flag indicating PWM status. void pwm_ready_callback(uint32_t pwm_id) // PWM callback function { ready_flag = true; } static nrf_drv_pwm_t m_pwm0 = NRF_DRV_PWM_INSTANCE(0); APP_PWM_INSTANCE(PWM1,1); // Create the instance "PWM1" using TIMER1. static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; uint8_t rcvData[8]; //BRN uint8_t sendData[8];//BRN uint16_t DataLength; //BRN uint8_t testData = 0;//BRN uint32_t brnEc; bool writeFlashCmd = 0; bool readFlashCmd = 0; bool advStartedFlag = 0; bool connectedFlag = 0; bool newBleDataFlag = 0; uint16_t updateDevStateCnt; const uint8_t firmwareVer[2] = {0x01,0x03}; bool decanterStateFlag = 0; bool beepOnFlag = 0; bool systemOnFlag = 0; bool preKeyState = 1; bool ypSwitchState = 0; bool aerateStartFlag = 0; bool aerateDoneFlag = 0; bool motorOnFlag = 0; bool uploadYpState = 0; uint8_t keyDebounceCnt = 0; uint16_t ledBlinkingCnt = 0; uint16_t beepTimeCnt = 0; uint8_t beepTimes = 0; uint16_t ypSwitchDetCnt = 0; uint32_t brnEc = 0; uint16_t enterSleepDelay = 0; uint16_t sysAutoOffCnt = 0; uint16_t msCnt = 0; uint16_t aerateTimer = 0; uint8_t ledState = 0; uint16_t beepIntervalCnt = 0; uint8_t aerateDoneBeepCnt = 0; uint8_t uploadYpStateDelay = 0; nrf_saadc_value_t saadc_val; uint16_t adcReadDelay = 0; uint8_t batLowCnt = 0; bool batLowFlag = 0; bool preHallSnrLvl = 0; bool hallStUpdateFlag = 0; uint8_t hallSnrDebounceCnt = 0; uint16_t rotateSpeedTimeCnt = 0; uint16_t rotateSpeedTime = 0; uint16_t stuckCnt = 0; bool stuckedFlag = 0; uint8_t pwmSetting = 0; uint8_t pwmSettingBackup = 0; bool usbConnectedFlag = 0; uint8_t usbConnectCnt = 0; uint16_t motorOffDelayCnt = 0; bool motorDelayStopFlag = 0; bool motorDelayOffTimeSetFlag = 0; bool backToFixedPosFlag; uint8_t hallBlockCnt = 0; uint16_t motorDelayOffTimeSet; static nrf_pwm_values_individual_t m_demo1_seq_values; static nrf_pwm_sequence_t const m_demo1_seq = { .values.p_individual = &m_demo1_seq_values, .length = NRF_PWM_VALUES_LENGTH(m_demo1_seq_values), .repeats = 0, .end_delay = 0 }; static void demo1_handler(nrf_drv_pwm_evt_type_t event_type) { } static void pwm_drv_init(void) { nrf_drv_pwm_config_t const config0 = { .output_pins = { MOTOR_PIN, NRF_DRV_PWM_PIN_NOT_USED, NRF_DRV_PWM_PIN_NOT_USED, NRF_DRV_PWM_PIN_NOT_USED }, .irq_priority = APP_IRQ_PRIORITY_LOWEST, .base_clock = NRF_PWM_CLK_4MHz, .count_mode = NRF_PWM_MODE_UP, .top_value = 255, .load_mode = NRF_PWM_LOAD_INDIVIDUAL, .step_mode = NRF_PWM_STEP_AUTO }; APP_ERROR_CHECK(nrf_drv_pwm_init(&m_pwm0, &config0, NULL/*demo1_handler*/)); m_demo1_seq_values.channel_0 = 255; (void)nrf_drv_pwm_simple_playback(&m_pwm0, &m_demo1_seq, 1, NRF_DRV_PWM_FLAG_LOOP); } static void advertising_init(void); static void advertising_start(bool erase_bonds); static void fstorage_evt_handler(nrf_fstorage_evt_t * p_evt); NRF_FSTORAGE_DEF(nrf_fstorage_t fstorage) = { /* Set a handler for fstorage events. */ .evt_handler = fstorage_evt_handler, /* These below are the boundaries of the flash space assigned to this instance of fstorage. * You must set these manually, even at runtime, before nrf_fstorage_init() is called. * The function nrf5_flash_end_addr_get() can be used to retrieve the last address on the * last page of flash available to write data. */ .start_addr = 0x77000, .end_addr = 0x77FFF, }; /* Dummy data to write to flash. */ //static uint32_t pairKey; static void fstorage_evt_handler(nrf_fstorage_evt_t * p_evt) { if (p_evt->result != NRF_SUCCESS) { NRF_LOG_INFO("--> Event received: ERROR while executing an fstorage operation."); return; } switch (p_evt->id) { case NRF_FSTORAGE_EVT_WRITE_RESULT: { NRF_LOG_INFO("--> Event received: wrote %d bytes at address 0x%x.", p_evt->len, p_evt->addr); } break; case NRF_FSTORAGE_EVT_ERASE_RESULT: { NRF_LOG_INFO("--> Event received: erased %d page from address 0x%x.", p_evt->len, p_evt->addr); } break; default: break; } } //static uint32_t nrf5_flash_end_addr_get() //{ // uint32_t const bootloader_addr = NRF_UICR->NRFFW[0]; // uint32_t const page_sz = NRF_FICR->CODEPAGESIZE; // uint32_t const code_sz = NRF_FICR->CODESIZE; // return (bootloader_addr != 0xFFFFFFFF ? // bootloader_addr : (code_sz * page_sz)); //} void wait_for_flash_ready(nrf_fstorage_t const * p_fstorage) { /* While fstorage is busy, sleep and wait for an event. */ while (nrf_fstorage_is_busy(p_fstorage)) { sd_app_evt_wait(); } } /**@brief Handler for shutdown preparation. * * @details During shutdown procedures, this function will be called at a 1 second interval * untill the function returns true. When the function returns true, it means that the * app is ready to reset to DFU mode. * * @param[in] event Power manager event. * * @retval True if shutdown is allowed by this power manager handler, otherwise false. */ static bool app_shutdown_handler(nrf_pwr_mgmt_evt_t event) { switch (event) { case NRF_PWR_MGMT_EVT_PREPARE_DFU: NRF_LOG_INFO("Power management wants to reset to DFU mode."); // YOUR_JOB: Get ready to reset into DFU mode // // If you aren't finished with any ongoing tasks, return "false" to // signal to the system that reset is impossible at this stage. // // Here is an example using a variable to delay resetting the device. // // if (!m_ready_for_reset) // { // return false; // } // else //{ // // // Device ready to enter // uint32_t err_code; // err_code = sd_softdevice_disable(); // APP_ERROR_CHECK(err_code); // err_code = app_timer_stop_all(); // APP_ERROR_CHECK(err_code); //} break; default: // YOUR_JOB: Implement any of the other events available from the power management module: // -NRF_PWR_MGMT_EVT_PREPARE_SYSOFF // -NRF_PWR_MGMT_EVT_PREPARE_WAKEUP // -NRF_PWR_MGMT_EVT_PREPARE_RESET return true; } NRF_LOG_INFO("Power management allowed to reset to DFU mode."); return true; } //lint -esym(528, m_app_shutdown_handler) /**@brief Register application shutdown handler with priority 0. */ NRF_PWR_MGMT_HANDLER_REGISTER(app_shutdown_handler, 0); static void buttonless_dfu_sdh_state_observer(nrf_sdh_state_evt_t state, void * p_context) { if (state == NRF_SDH_EVT_STATE_DISABLED) { // Softdevice was disabled before going into reset. Inform bootloader to skip CRC on next boot. nrf_power_gpregret2_set(BOOTLOADER_DFU_SKIP_CRC); //Go to system off. nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF); } } /* nrf_sdh state observer. */ NRF_SDH_STATE_OBSERVER(m_buttonless_dfu_state_obs, 0) = { .handler = buttonless_dfu_sdh_state_observer, }; // YOUR_JOB: Update this code if you want to do anything given a DFU event (optional). /**@brief Function for handling dfu events from the Buttonless Secure DFU service * * @param[in] event Event from the Buttonless Secure DFU service. */ static void ble_dfu_evt_handler(ble_dfu_buttonless_evt_type_t event) { switch (event) { case BLE_DFU_EVT_BOOTLOADER_ENTER_PREPARE: NRF_LOG_INFO("Device is preparing to enter bootloader mode."); // YOUR_JOB: Disconnect all bonded devices that currently are connected. // This is required to receive a service changed indication // on bootup after a successful (or aborted) Device Firmware Update. break; case BLE_DFU_EVT_BOOTLOADER_ENTER: // YOUR_JOB: Write app-specific unwritten data to FLASH, control finalization of this // by delaying reset by reporting false in app_shutdown_handler NRF_LOG_INFO("Device will enter bootloader mode."); break; case BLE_DFU_EVT_BOOTLOADER_ENTER_FAILED: NRF_LOG_ERROR("Request to enter bootloader mode failed asynchroneously."); // YOUR_JOB: Take corrective measures to resolve the issue // like calling APP_ERROR_CHECK to reset the device. break; case BLE_DFU_EVT_RESPONSE_SEND_ERROR: NRF_LOG_ERROR("Request to send a response to client failed."); // YOUR_JOB: Take corrective measures to resolve the issue // like calling APP_ERROR_CHECK to reset the device. APP_ERROR_CHECK(false); break; default: NRF_LOG_ERROR("Unknown event from ble_dfu_buttonless."); break; } } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void pm_evt_handler(pm_evt_t const * p_evt) { ret_code_t err_code; switch (p_evt->evt_id) { case PM_EVT_BONDED_PEER_CONNECTED: { NRF_LOG_INFO("Connected to a previously bonded device."); } break; case PM_EVT_CONN_SEC_SUCCEEDED: { NRF_LOG_INFO("Connection secured: role: %d, conn_handle: 0x%x, procedure: %d.", ble_conn_state_role(p_evt->conn_handle), p_evt->conn_handle, p_evt->params.conn_sec_succeeded.procedure); } break; case PM_EVT_CONN_SEC_FAILED: { /* Often, when securing fails, it shouldn't be restarted, for security reasons. * Other times, it can be restarted directly. * Sometimes it can be restarted, but only after changing some Security Parameters. * Sometimes, it cannot be restarted until the link is disconnected and reconnected. * Sometimes it is impossible, to secure the link, or the peer device does not support it. * How to handle this error is highly application dependent. */ } break; case PM_EVT_CONN_SEC_CONFIG_REQ: { // Reject pairing request from an already bonded peer. pm_conn_sec_config_t conn_sec_config = {.allow_repairing = 1}; pm_conn_sec_config_reply(p_evt->conn_handle, &conn_sec_config); } break; case PM_EVT_STORAGE_FULL: { // Run garbage collection on the flash. err_code = fds_gc(); if (err_code == FDS_ERR_NO_SPACE_IN_QUEUES) { // Retry. } else { APP_ERROR_CHECK(err_code); } } break; case PM_EVT_PEERS_DELETE_SUCCEEDED: { advertising_start(false); //advStartedFlag = 1; } break; case PM_EVT_PEER_DATA_UPDATE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peer_data_update_failed.error); } break; case PM_EVT_PEER_DELETE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peer_delete_failed.error); } break; case PM_EVT_PEERS_DELETE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peers_delete_failed_evt.error); } break; case PM_EVT_ERROR_UNEXPECTED: { // Assert. APP_ERROR_CHECK(p_evt->params.error_unexpected.error); } break; case PM_EVT_CONN_SEC_START: case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED: case PM_EVT_PEER_DELETE_SUCCEEDED: case PM_EVT_LOCAL_DB_CACHE_APPLIED: case PM_EVT_LOCAL_DB_CACHE_APPLY_FAILED: // This can happen when the local DB has changed. case PM_EVT_SERVICE_CHANGED_IND_SENT: case PM_EVT_SERVICE_CHANGED_IND_CONFIRMED: default: break; } } /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); //BRN uint8_t passkey[] = STATIC_PASSKEY; m_static_pin_option.gap_opt.passkey.p_passkey = passkey; err_code = sd_ble_opt_set(BLE_GAP_OPT_PASSKEY, &m_static_pin_option); APP_ERROR_CHECK(err_code); //BRN } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_evt_t * p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { //uint32_t err_code; NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); //bsp_board_led_invert(BSP_BOARD_LED_3); //BRN if(p_evt->params.rx_data.length == 4) { for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { rcvData[i] = p_evt->params.rx_data.p_data[i];//BRN } newBleDataFlag = 1; } } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; ble_dfu_buttonless_init_t dfus_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); // Initialize the async SVCI interface to bootloader. err_code = ble_dfu_buttonless_async_svci_init(); APP_ERROR_CHECK(err_code); dfus_init.evt_handler = ble_dfu_evt_handler; err_code = ble_dfu_buttonless_init(&dfus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); ledState = LED_ST_SLOW_BLINK; APP_ERROR_CHECK(err_code); connectedFlag = 0; //BRN sysAutoOffCnt = AUTO_OFF_TIME; } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code; nrf_gpio_pin_clear(LED_PIN); nrf_gpio_pin_clear(HALL_PWR_PIN); APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, 0)); app_pwm_disable(&PWM1); app_timer_stop(m_app_1ms_tmr); m_demo1_seq_values.channel_0 = 255; nrf_drv_pwm_stop(&m_pwm0, true); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: //err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); //APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: //sleep_mode_enter(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); //err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); //APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); connectedFlag = 1; beepTimes = 1; uploadYpState = 1; uploadYpStateDelay = 100; aerateStartFlag = 0; //advStartedFlag = 0; ledState = LED_ST_ON; //BRN ble_gap_sec_params_t sec_param; ble_gap_sec_params_t params; params.bond = 1; params.mitm = 1; sd_ble_gap_authenticate(m_conn_handle,¶ms); NRF_LOG_INFO("authenticated"); NRF_LOG_FLUSH(); //BRN break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; connectedFlag = 0x00;//BRN sysAutoOffCnt = AUTO_OFF_TIME; beepTimes = 2; ledState = LED_ST_SLOW_BLINK; //advertising_init(); //BRN break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; // case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // //BRN // // Pairing not supported // //err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); // //APP_ERROR_CHECK(err_code); // //resp_pair_request(); // //BRN // break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); connectedFlag = 0; //BRN sysAutoOffCnt = AUTO_OFF_TIME; ledState = LED_ST_SLOW_BLINK; break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); ledState = LED_ST_SLOW_BLINK; connectedFlag = 0; //BRN sysAutoOffCnt = AUTO_OFF_TIME; break; //BRN case BLE_GAP_EVT_AUTH_STATUS: if(p_ble_evt->evt.gap_evt.params.auth_status.auth_status == BLE_GAP_SEC_STATUS_SUCCESS){ NRF_LOG_INFO("SEC_SUCCESS"); NRF_LOG_FLUSH(); //beepTimes = 3; }else{ sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); ledState = LED_ST_SLOW_BLINK; connectedFlag = 0; //BRN sysAutoOffCnt = AUTO_OFF_TIME; } //BRN default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } static void peer_manager_init() { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); connectedFlag = 0x00;//BRN sysAutoOffCnt = AUTO_OFF_TIME; if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } //beepTimes = 2; break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; case BSP_EVENT_KEY_3: //BRN NRF_LOG_INFO("KEY3 EVENT HAPPENED"); //bsp_board_led_invert(BSP_BOARD_LED_1); //BRN DataLength = 4; sendData[0] = 0xA1; sendData[1] = 0xB2; sendData[3] = 0xC3; sendData[4] = testData++; err_code = ble_nus_data_send(&m_nus, sendData, &DataLength, m_conn_handle, m_nus.tx_handles.value_handle ); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } default: break; } } /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; int8_t tx_power_level = TX_POWER_LEVEL;//BRN memset(&init, 0, sizeof(init)); //--------------brn---------------------- //�Զ�����û����ݣ������������� uint8_t my_adv_manuf_data[3]; // my_adv_manuf_data[0] = (uint8_t)(NRF_FICR->DEVICEID[0]&0x000000FF); // my_adv_manuf_data[1] = (uint8_t)((NRF_FICR->DEVICEID[0] >> 8)&0x000000FF); // my_adv_manuf_data[2] = (uint8_t)((NRF_FICR->DEVICEID[0] >> 16)&0x000000FF); // my_adv_manuf_data[3] = (uint8_t)((NRF_FICR->DEVICEID[0] >> 24)&0x000000FF); // my_adv_manuf_data[4] = (uint8_t)(NRF_FICR->DEVICEID[1]&0x000000FF); // my_adv_manuf_data[5] = (uint8_t)((NRF_FICR->DEVICEID[1] >> 8)&0x000000FF); // my_adv_manuf_data[6] = (uint8_t)((NRF_FICR->DEVICEID[1] >> 16)&0x000000FF); // my_adv_manuf_data[7] = (uint8_t)((NRF_FICR->DEVICEID[1] >> 24)&0x000000FF); my_adv_manuf_data[0] = 0; my_adv_manuf_data[1] = firmwareVer[0]; my_adv_manuf_data[2] = firmwareVer[1]; //�����һ���������Զ������ݵĽṹ����������ù㲥����ʱ���ñ����ĵ�ַ��ֵ�� //�㲥���ݰ��� ble_advdata_manuf_data_t manuf_specific_data; //0x0059��Nordic��������IDID manuf_specific_data.company_identifier = 0x0059; //ָ���������Զ�������� manuf_specific_data.data.p_data = my_adv_manuf_data; //�������Զ�������ݴ�С manuf_specific_data.data.size = sizeof(my_adv_manuf_data); init.advdata.p_manuf_specific_data = &manuf_specific_data; //---------------------------------------------------------------------- init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.advdata.p_tx_power_level = &tx_power_level; //BRN init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /** @brief Clear bonding information from persistent storage. */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for starting advertising. */ /**@brief Function for starting advertising. */ static void advertising_start(bool erase_bonds) { if (erase_bonds == true) { delete_bonds(); // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event. } else { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); NRF_LOG_DEBUG("advertising is started"); } // uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); // APP_ERROR_CHECK(err_code); } static void tx_power_set(void) { ret_code_t err_code = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, m_advertising.adv_handle, TX_POWER_LEVEL); APP_ERROR_CHECK(err_code); } static void app_1ms_timer_handler(void * p_context) //BRN { UNUSED_PARAMETER(p_context); UNUSED_PARAMETER(p_context); if(ledBlinkingCnt) ledBlinkingCnt--; if(beepTimeCnt) beepTimeCnt--; if(enterSleepDelay) enterSleepDelay--; keyDebounceCnt++; ypSwitchDetCnt++; if(beepIntervalCnt) beepIntervalCnt--; if(uploadYpStateDelay) uploadYpStateDelay--; if(adcReadDelay) adcReadDelay--; hallSnrDebounceCnt++; rotateSpeedTimeCnt++; stuckCnt++; usbConnectCnt++; if(motorOffDelayCnt) motorOffDelayCnt--; if(hallBlockCnt) hallBlockCnt--; msCnt++; if(msCnt >= 1000) { msCnt = 0; if(sysAutoOffCnt) sysAutoOffCnt--; if((ypSwitchState == 0) && motorOnFlag) { if(aerateTimer) aerateTimer--; } } updateDevStateCnt++; if(updateDevStateCnt >= 800) { updateDevStateCnt = 0; DataLength = 4; sendData[0] = (uint8_t)(rotateSpeedTime >> 8); sendData[1] = (uint8_t)(rotateSpeedTime & 0x00FF); sendData[2] = m_demo1_seq_values.channel_0; sendData[3] = testData++; sendData[3] &= 0x7F; if(backToFixedPosFlag) sendData[3] |= 0x80; ble_nus_data_send(&m_nus, sendData, &DataLength, m_conn_handle, m_nus.tx_handles.value_handle ); } } static void GPIO_Init(void) { nrf_gpio_cfg_output(LED_PIN); nrf_gpio_cfg_output(HALL_PWR_PIN); nrf_gpio_pin_clear(LED_PIN); nrf_gpio_pin_clear(HALL_PWR_PIN); nrf_gpio_cfg_input(KEY_PIN, NRF_GPIO_PIN_PULLUP ); nrf_gpio_cfg_input(YP_PIN, NRF_GPIO_PIN_PULLUP ); nrf_gpio_cfg_input(USB_DET_PIN, NRF_GPIO_PIN_PULLDOWN ); nrf_gpio_cfg_input(HALL_OUT_PIN, NRF_GPIO_PIN_PULLUP ); nrf_gpio_cfg_input(BAT_VOL_PIN, NRF_GPIO_PIN_NOPULL ); } static void Button_Process(void) { if((nrf_gpio_pin_read(KEY_PIN)) != preKeyState) { if(keyDebounceCnt >= 15) { preKeyState = nrf_gpio_pin_read(KEY_PIN); keyDebounceCnt = 0; if(preKeyState == 0) //KEY_DOWN { beepTimes = 1; if(systemOnFlag == 0) { systemOnFlag = 1; sysAutoOffCnt = AUTO_OFF_TIME; ypSwitchState = 1; ypSwitchDetCnt = 0; aerateTimer = 300; ledState = LED_ST_SLOW_BLINK; enterSleepDelay = 300; motorOnFlag = 0; backToFixedPosFlag = 0; } else { systemOnFlag = 0; backToFixedPosFlag = 0; if(motorOnFlag) { motorDelayStopFlag = 1; motorOffDelayCnt = 2000; motorDelayOffTimeSetFlag = 0; backToFixedPosFlag = 0; } } } } } else { keyDebounceCnt = 0; } } static void LED_Process(void) { if(systemOnFlag) { if(batLowFlag) { if(ledBlinkingCnt == 0) { if(nrf_gpio_pin_out_read(LED_PIN) == 1) { ledBlinkingCnt = 3000; } else { ledBlinkingCnt = 300; beepTimes = 1; } nrf_gpio_pin_toggle(LED_PIN); } } else if(ledState == 0) { nrf_gpio_pin_clear(LED_PIN); } else if(ledState == 1) //SLOW BLINKING { if(ledBlinkingCnt == 0) { ledBlinkingCnt = 1000; nrf_gpio_pin_toggle(LED_PIN); } } else if(ledState == 2) //constantly on { nrf_gpio_pin_set(LED_PIN); } else if(ledState == 3) //FAST BLINKING { if(ledBlinkingCnt == 0) { if(nrf_gpio_pin_out_read(LED_PIN) == 1) { ledBlinkingCnt = 300; } else { ledBlinkingCnt = 100; } nrf_gpio_pin_toggle(LED_PIN); } } } else { nrf_gpio_pin_clear(LED_PIN); } } static void Motro_Ctrl(void) { if(stuckedFlag) { if(motorOnFlag) { m_demo1_seq_values.channel_0 = 255; motorOnFlag = 0; } } if((ypSwitchState == 1) && backToFixedPosFlag) { if(motorDelayStopFlag == 0) { pwmSetting = INIT_BAT_PWM; pwmSettingBackup = pwmSetting; m_demo1_seq_values.channel_0 = 255 - pwmSetting; motorOnFlag = 1; stuckCnt = 0; motorDelayStopFlag = 1; motorOffDelayCnt = 2000; hallBlockCnt = 30; motorDelayOffTimeSetFlag = 0; backToFixedPosFlag = 0; } } if(motorDelayStopFlag && motorOnFlag) { if(motorOffDelayCnt == 0) { m_demo1_seq_values.channel_0 = 255; motorOnFlag = 0; motorDelayStopFlag = 0; } } if(systemOnFlag && aerateTimer && (ypSwitchState == 0) && aerateStartFlag && (stuckedFlag == 0)) { if(motorOnFlag == 0) { pwmSetting = INIT_BAT_PWM; pwmSettingBackup = pwmSetting; m_demo1_seq_values.channel_0 = 255 - pwmSetting; motorOnFlag = 1; stuckCnt = 0; motorDelayStopFlag = 0; backToFixedPosFlag = 1; } } else if(aerateDoneFlag) { if(backToFixedPosFlag) { motorDelayStopFlag = 1; motorOffDelayCnt = 2000; motorDelayOffTimeSetFlag = 0; backToFixedPosFlag = 0; m_demo1_seq_values.channel_0 = 255 - pwmSetting; motorOnFlag = 1; } else if(motorOnFlag && (motorDelayStopFlag == 0)) { m_demo1_seq_values.channel_0 = 255; motorOnFlag = 0; } }else if(motorDelayStopFlag == 0) { if(motorOnFlag) { m_demo1_seq_values.channel_0 = 255; motorOnFlag = 0; } } } static void Beep_Ctrl(void) { if(aerateDoneBeepCnt) { if(beepIntervalCnt == 0) { beepTimes = 3; beepIntervalCnt = 3000; aerateDoneBeepCnt--; } } if(stuckedFlag) { if(beepIntervalCnt == 0) { beepTimes = 1; beepIntervalCnt = 500; } } if(beepTimeCnt == 0) { if(beepTimes) { if(beepOnFlag) { beepOnFlag = 0; APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, 0)); beepTimeCnt = 200; beepTimes--; } else { beepOnFlag = 1; APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, 50)); beepTimeCnt = 100; } } } } void YP_Swtich_Detection(void) { if(uploadYpState && (uploadYpStateDelay == 0)) { uploadYpState = 0; DataLength = 1; if(ypSwitchState == 0) { sendData[0] = 0x01; } else { sendData[0] = 0x00; } ble_nus_data_send(&m_nus, sendData, &DataLength, m_conn_handle, m_nus.pot_handles.value_handle ); } if(nrf_gpio_pin_read(YP_PIN) != ypSwitchState) { if(ypSwitchDetCnt >= 300) { ypSwitchState = nrf_gpio_pin_read(YP_PIN); ypSwitchDetCnt = 0; if(ypSwitchState == 1) //YP SWITCH is up { stuckedFlag = 0; if(aerateDoneFlag == 0) { sysAutoOffCnt = AUTO_OFF_TIME; } DataLength = 1; sendData[0] = 0x00; ble_nus_data_send(&m_nus, sendData, &DataLength, m_conn_handle, m_nus.pot_handles.value_handle ); } else { //aerateTimer = 300; //ledState = LED_ST_ON; DataLength = 1; sendData[0] = 0x01; ble_nus_data_send(&m_nus, sendData, &DataLength, m_conn_handle, m_nus.pot_handles.value_handle ); if(connectedFlag == 0) { if((aerateStartFlag == 0) && (ledState != LED_ST_FAST_BLINK)) { //aerateTimer = 300; //aerateStartFlag = 1; } } } } } else { ypSwitchDetCnt = 0; } } static void Timer_Process(void) { if(aerateDoneFlag) { if(sysAutoOffCnt == 0) { systemOnFlag = 0; enterSleepDelay = 300; beepTimes = 1; aerateDoneFlag = 0; } } if(stuckedFlag || batLowFlag) { if(systemOnFlag && (sysAutoOffCnt == 0)) { systemOnFlag = 0; enterSleepDelay = 500; beepTimes = 1; } } if((ypSwitchState == 1) || (aerateStartFlag == 0)) { if(systemOnFlag && (sysAutoOffCnt == 0) && (connectedFlag == 0)){ systemOnFlag = 0; enterSleepDelay = 500; beepTimes = 1; } } else if( (aerateStartFlag) && (aerateTimer == 0)) { ledState = LED_ST_FAST_BLINK; sysAutoOffCnt = 10; aerateDoneBeepCnt = 3; aerateStartFlag = 0; aerateDoneFlag = 1; } } void saadc_callback(nrf_drv_saadc_evt_t const * p_event) { // } void saadc_init(void) { ret_code_t err_code; nrf_saadc_channel_config_t channel_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN6); err_code = nrf_drv_saadc_init(NULL, saadc_callback); APP_ERROR_CHECK(err_code); err_code = nrf_drv_saadc_channel_init(0, &channel_config); APP_ERROR_CHECK(err_code); } void Adc_Read(void) { if(adcReadDelay == 0) { adcReadDelay = 500; nrf_drv_saadc_sample_convert(0,&saadc_val); if((batLowFlag == 0) && (usbConnectedFlag == 0)) { if(saadc_val <= 0x02C8) { batLowCnt++; if(batLowCnt >= 3) { batLowFlag = 1; if(connectedFlag) { sysAutoOffCnt = AUTO_OFF_TIME; } } }else { batLowCnt = 0; } } // DataLength = 4; // sendData[0] = (uint8_t)(saadc_val >> 8); // sendData[1] = (uint8_t)(saadc_val & 0x00FF); // sendData[2] = 0xC3; // sendData[3] = testData++; // ble_nus_data_send(&m_nus, sendData, &DataLength, m_conn_handle, m_nus.tx_handles.value_handle ); } } void Usb_Detect(void) { if(nrf_gpio_pin_read(USB_DET_PIN) != usbConnectedFlag) { if(usbConnectCnt > 100) { usbConnectedFlag = nrf_gpio_pin_read(USB_DET_PIN); if(usbConnectedFlag) { beepTimes = 1; batLowFlag = 0; } else { beepTimes = 2; } } } else { usbConnectCnt = 0; } } void Stuck_Detect(void) { if(motorOnFlag && (ypSwitchState == 0)) { if(stuckCnt > 2500) { stuckedFlag = 1; stuckCnt = 0; sysAutoOffCnt = AUTO_OFF_TIME; } } } void Hall_Sensor_Detect(void) { if(nrf_gpio_pin_read(HALL_OUT_PIN) != preHallSnrLvl) { if(hallSnrDebounceCnt >= 3) { preHallSnrLvl = nrf_gpio_pin_read(HALL_OUT_PIN); hallSnrDebounceCnt = 0; stuckCnt = 0; hallStUpdateFlag = 1; if(preHallSnrLvl == 0) { rotateSpeedTime = rotateSpeedTimeCnt; rotateSpeedTimeCnt = 0; // DataLength = 4; // sendData[0] = (uint8_t)(rotateSpeedTime >> 8); // sendData[1] = (uint8_t)(rotateSpeedTime & 0x00FF); // sendData[2] = pwmSetting; // sendData[3] = testData++; // ble_nus_data_send(&m_nus, sendData, &DataLength, m_conn_handle, m_nus.tx_handles.value_handle ); if(motorDelayStopFlag && (motorDelayOffTimeSetFlag == 0) && (hallBlockCnt == 0)) { motorOffDelayCnt = motorDelayOffTimeSet; motorDelayOffTimeSetFlag = 1; } } } } else { hallSnrDebounceCnt = 0; } } void Rotate_Speed_Adjust(void) { if(aerateStartFlag && motorOnFlag && hallStUpdateFlag) { hallStUpdateFlag = 0; if(rotateSpeedTime >= 933) { if(pwmSetting < 255) { pwmSetting++; pwmSettingBackup = pwmSetting; m_demo1_seq_values.channel_0 = 255 - pwmSetting; } } else if(rotateSpeedTime <= 913) { if(pwmSetting) { pwmSetting--; pwmSettingBackup = pwmSetting; m_demo1_seq_values.channel_0 = 255 - pwmSetting; } } } } void variable_init(void) { preKeyState = 1; ypSwitchState = 1; enterSleepDelay = 500; aerateStartFlag = 0; ledState = LED_ST_SLOW_BLINK; uploadYpState = 0; adcReadDelay = 100; batLowFlag = 0; } /**@brief Application main function. */ int main(void) { bool erase_bonds; uint32_t err_code; GPIO_Init(); //beepTimes = 2; //test if(nrf_gpio_pin_read(KEY_PIN) == 0) { beepTimes = 1; systemOnFlag = 1; sysAutoOffCnt = AUTO_OFF_TIME;//60; ypSwitchState = 1; ypSwitchDetCnt = 0; aerateTimer = 0; ledState = LED_ST_SLOW_BLINK; enterSleepDelay = 300; motorOnFlag = 0; aerateStartFlag = 0; aerateDoneFlag = 0; batLowFlag = 0; nrf_gpio_pin_set(HALL_PWR_PIN); nrf_gpio_pin_set(LED_PIN); if(nrf_gpio_pin_read(USB_DET_PIN)) { usbConnectedFlag = 1; } else { usbConnectedFlag = 0; } motorDelayOffTimeSet = 500; } pwm_drv_init(); /* Initialize and enable PWM. */ app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_1CH(250, BEEP_PIN); //BEEP /MOTOR pwm1_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH; brnEc = app_pwm_init(&PWM1,&pwm1_cfg,NULL/*pwm_ready_callback*/); APP_ERROR_CHECK(brnEc); app_pwm_enable(&PWM1); APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, 0)); while(beepTimes) { APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, 50)); nrf_delay_ms(50); APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, 0)); nrf_delay_ms(100); beepTimes--; } // Initialize. log_init(); timers_init(); //buttons_leds_init(&erase_bonds); //bsp_board_init(BSP_INIT_LEDS); //BRN power_management_init(); ble_stack_init(); peer_manager_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); variable_init(); // Start execution. //advertising_start(erase_bonds); NRF_LOG_INFO("Debug logging for UART over RTT started."); app_timer_create(&m_app_1ms_tmr,APP_TIMER_MODE_REPEATED,app_1ms_timer_handler); //BRN app_timer_start(m_app_1ms_tmr, APP_TIMER_TICKS(1), NULL); saadc_init(); // Enter main loop. for (;;) { Button_Process(); LED_Process(); Beep_Ctrl(); YP_Swtich_Detection(); Motro_Ctrl(); Timer_Process(); Adc_Read(); Hall_Sensor_Detect(); Rotate_Speed_Adjust(); Usb_Detect(); Stuck_Detect(); if(newBleDataFlag) { newBleDataFlag = 0; beepTimes = 1; APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, rcvData[3])); //m_demo1_seq_values.channel_0 = rcvData[3]; if(ypSwitchState == 1) { //beepTimes = 2; } else if(aerateDoneFlag == 0) { beepTimes = 1; //motorDelayOffTimeSet = (rcvData[2] * 256) + rcvData[3]; //test if(rcvData[0] == 0x01) { aerateTimer = rcvData[1]*60 + rcvData[2]; aerateStartFlag = 1; aerateDoneFlag = 0; } else { aerateStartFlag = 0; aerateDoneFlag = 0; if(motorOnFlag) { motorDelayStopFlag = 1; motorOffDelayCnt = 2000; motorDelayOffTimeSetFlag = 0; backToFixedPosFlag = 0; } } } } if((enterSleepDelay == 0) &&(systemOnFlag == 0) && (nrf_gpio_pin_read(KEY_PIN) == 1)) { if((advStartedFlag) && (connectedFlag == 0)) { advStartedFlag = 0; // err_code = sd_ble_gap_adv_stop(m_advertising.adv_handle); // APP_ERROR_CHECK(err_code); } if(motorDelayStopFlag == 0) { sleep_mode_enter(); } } else { if(systemOnFlag && (advStartedFlag == 0)) { advertising_start(false); advStartedFlag = 1; } } idle_state_handle(); } } /** * @} */