This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

nrf52840 flash read write

hie,

i trying to storage the data in flash and read it. i am unable to read the flash .i have attached my code.please correct me if there is any mistake.

/**
 * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <ctype.h> 
#include "nordic_common.h"
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"

#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "nrf_delay.h"
#include "nrf.h"
#include "nrf_drv_timer.h"
#include "bsp.h"
#include "nrf_wdt.h"
#include "nrf_drv_spi.h"
#include "nrf_fstorage.h"
#include "nrf_fstorage_sd.h"

#define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */

#define DEVICE_NAME                     "DIGANT2"                               /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                32                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
#define BLE_UART_LIMIT 			240 	// size of UART sub packet


#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */

#define TX_POWER_LEVEL  8

BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};

uint8_t DATA_PACKECT[28];
uint8_t data_array[512];
uint16_t uartIndex = 0;
uint16_t uartSubIdx;
uint8_t NEW_FORMAT[160];

uint16_t one_sec_flag;
uint16_t two_sec_flag;
uint16_t three_sec_flag;
static int time=1;

uint16_t BAUD_4800_flag;
uint16_t BAUD_9600_flag;
uint16_t BAUD_19200_flag;
uint16_t BAUD_38400_flag;
uint16_t BAUD_115200_flag;
uint16_t SN_FLAG;

uint8_t S_ID[2] ="S:";
uint8_t T_NAME[5] ="TEMP:";
uint8_t B_NAME[5] ="BT_V:";
uint8_t F_NAME[3] ="FH:";
uint8_t DI1_NAME[4] ="DI0:";
uint8_t DI2_NAME[4] ="DI1:";
uint8_t DI3_NAME[4] ="DI2:";
uint8_t DI4_NAME[4] ="DI3:";
uint8_t DI5_NAME[4] ="DI4:";
uint8_t COMA[1] = ",";
uint8_t N_LINE[2] = "\r\n";
uint8_t SPACE[1] = " ";

uint8_t UID[4];
uint8_t buffer[8];
uint8_t buffer1[6];
uint8_t buffer2[4];
uint8_t buffer3[4];
uint8_t buffer4[5] = " OFF ";
uint8_t buffer5[5] = "  ON ";
uint8_t DEVICE_CFGNAME[10];

uint8_t FUEL_HEIGHT[4];
uint8_t BAT_VOLTAGE[4];
uint8_t WR_CONFIG[4];

float F_HEIGHT;
float B_VOLTAGE;
float TEMP;

uint32_t num;
uint32_t num1;
uint32_t num2;

union ui32_to_ui8 {
                  uint32_t ui32;
                  uint8_t ui8[4];
                  }u;

float temperature(void);
float adcv_volt_f,RTD_TEMPERATURE;
void MODBUS(void);

#define TX_D         NRF_GPIO_PIN_MAP(0,6)
#define PAIR_LED     NRF_GPIO_PIN_MAP(0,27)
#define IN1          NRF_GPIO_PIN_MAP(1,15)
#define IN2          NRF_GPIO_PIN_MAP(1,13)
#define GPIO_1       NRF_GPIO_PIN_MAP(0,13)
#define GPIO_2       NRF_GPIO_PIN_MAP(0,29)
#define IN4          NRF_GPIO_PIN_MAP(1,10)
#define IN3          NRF_GPIO_PIN_MAP(1,9)
#define IN5          NRF_GPIO_PIN_MAP(0,14)

#define SPI_INSTANCE  0 /**< SPI instance index. */
static const nrf_drv_spi_t spi = NRF_DRV_SPI_INSTANCE(SPI_INSTANCE);  /**< SPI instance. */
static volatile bool spi_xfer_done;  /**< Flag used to indicate that SPI instance completed the transfer. */
static volatile bool config_done = false;

#define MAV_SAMPLE_WINDOW_SIZE	4
#define MAV_TEMPER_WINDOW_SIZE	4
#define	MAV_SAMPLE_WINDOW_MASK	(MAV_SAMPLE_WINDOW_SIZE-1)
#define	MAV_TEMPER_WINDOW_MASK	(MAV_TEMPER_WINDOW_SIZE-1)

long		mav_samples[MAV_SAMPLE_WINDOW_SIZE] = {0,0,0,0};
float		mav_temperature[MAV_TEMPER_WINDOW_SIZE] = {0,0,0,0};
uint8_t		mav_sample_indx = 0;
uint8_t		mav_temperature_indx = 0;
uint8_t		mav_sample_ready = 0;
uint8_t		mav_temperature_ready = 0;

uint8_t m_key[20] = {'D', 'I', 'G', 'A', 'N', 'T', '_', '_',
                           'T', 'E', 'C', 'H', 'N', 'O', 'L', 'O', 'G', 'I', 'E', 'S'};

APP_TIMER_DEF(Sip_timer); 

static void fstorage_evt_handler(nrf_fstorage_evt_t * p_evt);

NRF_FSTORAGE_DEF(nrf_fstorage_t fstorage) =
{
    /* Set a handler for fstorage events. */
    .evt_handler = fstorage_evt_handler,

    /* These below are the boundaries of the flash space assigned to this instance of fstorage.
     * You must set these manually, even at runtime, before nrf_fstorage_init() is called.
     * The function nrf5_flash_end_addr_get() can be used to retrieve the last address on the
     * last page of flash available to write data. */
    .start_addr = 0x3e000,
    .end_addr   = 0x3ffff,
};

/* Dummy data to write to flash. */
//static uint32_t m_data          = 0xBADC0FFE;
static uint8_t m_data[20];
static uint8_t m_hello_world[] = "hiiiiiii";

/**@brief   Helper function to obtain the last address on the last page of the on-chip flash that
 *          can be used to write user data.
 */
static uint32_t nrf5_flash_end_addr_get()
{
    uint32_t const bootloader_addr = NRF_UICR->NRFFW[0];
    uint32_t const page_sz         = NRF_FICR->CODEPAGESIZE;
    uint32_t const code_sz         = NRF_FICR->CODESIZE;

    return (bootloader_addr != 0xFFFFFFFF ?
            bootloader_addr : (code_sz * page_sz));
}

static void fstorage_evt_handler(nrf_fstorage_evt_t * p_evt)
{
    if (p_evt->result != NRF_SUCCESS)
    {
        NRF_LOG_INFO("--> Event received: ERROR while executing an fstorage operation.");
        return;
    }

    switch (p_evt->id)
    {
        case NRF_FSTORAGE_EVT_WRITE_RESULT:
        {
            NRF_LOG_INFO("--> Event received: wrote %d bytes at address 0x%x.",
                         p_evt->len, p_evt->addr);
        } break;

        case NRF_FSTORAGE_EVT_ERASE_RESULT:
        {
            NRF_LOG_INFO("--> Event received: erased %d page from address 0x%x.",
                         p_evt->len, p_evt->addr);
        } break;

        default:
            break;
    }
}

static void print_flash_info(nrf_fstorage_t * p_fstorage)
{
    NRF_LOG_INFO("========| flash info |========");
    NRF_LOG_INFO("erase unit: \t%d bytes",      p_fstorage->p_flash_info->erase_unit);
    NRF_LOG_INFO("program unit: \t%d bytes",    p_fstorage->p_flash_info->program_unit);
    NRF_LOG_INFO("==============================");
}

/**@brief   Sleep until an event is received. */
static void power_manage(void)
{
#ifdef SOFTDEVICE_PRESENT
    (void) sd_app_evt_wait();
#else
    __WFE();
#endif
}

void wait_for_flash_ready(nrf_fstorage_t const * p_fstorage)
{
    /* While fstorage is busy, sleep and wait for an event. */
    while (nrf_fstorage_is_busy(p_fstorage))
    {
        power_manage();
    }
}

//function to set up the flash memory
void flash_init()
{   
    ret_code_t err_code;
    nrf_fstorage_api_t * p_fs_api;
    p_fs_api = &nrf_fstorage_sd;
    err_code = nrf_fstorage_init(&fstorage, p_fs_api, NULL);
    APP_ERROR_CHECK(err_code);
}
/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for initializing the timer module.
 */
void timer_timeout_handler(void * p_context)
{
uint16_t count=0;
uint16_t count1=0;
count++;
count1++;

  if(count == 2)
  {
two_sec_flag = 1;
count = 0;
  }
if(count1 == 3)
  {
three_sec_flag = 1;
count1 = 0;
  }
one_sec_flag = 1;
}

static void timers_init(void)
{
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);

    err_code = app_timer_create(&Sip_timer, APP_TIMER_MODE_REPEATED, timer_timeout_handler);
    APP_ERROR_CHECK(err_code);
}

static void application_timers_start(void)
{
    /* YOUR_JOB: Start your timers. below is an example of how to start a timer.*/
       ret_code_t err_code;
       err_code = app_timer_start(Sip_timer, APP_TIMER_TICKS(60000), NULL); //1000 ms= 1 seg
       APP_ERROR_CHECK(err_code);
 
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}

unsigned str_to_decimal(const char *s)
{
    int result = 0;
    for (; *s; ++s) {
        /* Only process recognized digits */
        if (isdigit((unsigned char)*s))
            result = 10 * result + (*s - '0');
    }
    return result;
}
/*********************************************************************************/
void delchar(char *x,int a, int b)
{
  if ((a+b-1) <= strlen(x))
  {
    strcpy(&x[b-1],&x[a+b-1]);
    puts(x);
    }
}
/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_evt       Nordic UART Service event.
 */
/**@snippet [Handling the data received over BLE] */
/*static void nus_data_handler(ble_nus_evt_t * p_evt)
{
uint8_t ID_BUF[8];
int digit;
uint8_t time1[2];
uint8_t ACK_DATA[20];
uint8_t S_ACK_DATA[13];
uint8_t *matched;
uint16_t lenn = 12;

    if (p_evt->type == BLE_NUS_EVT_RX_DATA)
    {
        uint32_t err_code;
        uint32_t i;

        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

u.ui32 = NRF_FICR->DEVICEID[0];
itoa(u.ui32,buffer,16);

for(int ii=0;ii<9;ii++)
{
ID_BUF[ii]=buffer[ii];
}

  NRF_UART_TASK_STARTTX;
  nrf_gpio_pin_set(TX_D);

time=0;

//matched = strncmp(ID_BUF,p_evt->params.rx_data.p_data, 8);
matched = strstr(p_evt->params.rx_data.p_data,ID_BUF);

if(matched != 0)
{
   for(int i = 0; i < p_evt->params.rx_data.length-2; i++)
   {ACK_DATA[i] = p_evt->params.rx_data.p_data[i+2]+ m_key[i];}
   delchar(ACK_DATA, 1,9);
   delchar(ACK_DATA, 1,10);
   for(int i = 0; i < 13; i++)
   {S_ACK_DATA[i] = ACK_DATA[i]+ m_key[i];}

   ble_nus_data_send(&m_nus, &S_ACK_DATA[0], &lenn, m_conn_handle);

    if(p_evt->params.rx_data.length > 13 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '}' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 2] == '"' )
    {
        if(p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 5] == 'm' || p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 5] == 'M' )
          {
            time1[1] = p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3];
                if(p_evt->params.rx_data.length >15 && p_evt->params.rx_data.length <=19)
                  {
                   time1[0] = p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 4];
                  }
            app_uart_put(time1[0]);
            app_uart_put(time1[1]);
    time = str_to_decimal(time1);
          }
    }
}
else{app_uart_put('N');app_uart_put('O');app_uart_put('O');}
           
        for ( i = 0; i < p_evt->params.rx_data.length; i++)
        {   
            do
            {
              //  err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
         
            } while (err_code == NRF_ERROR_BUSY);
        }
    }
}*/

static void nus_data_handler(ble_nus_evt_t * p_evt)
{
char* matched;
char* matched_SN;
int digit,c,position=12,length_SN=0;
uint8_t time1[2];
uint8_t ACK_DATA[20];
uint16_t LEN = 18;
char Network_Name[2] = "SN";
   ble_gap_conn_sec_mode_t sec_mode;

    if (p_evt->type == BLE_NUS_EVT_RX_DATA)
    {
        uint32_t err_code;
        uint32_t i;

        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

u.ui32 = NRF_FICR->DEVICEID[0];
itoa(u.ui32,buffer,16);

  NRF_UART_TASK_STARTTX;
  nrf_gpio_pin_set(TX_D);

//time=1;
//matched = strncmp(ID_BUF,p_evt->params.rx_data.p_data, 8);
matched = strstr(p_evt->params.rx_data.p_data,buffer);
matched_SN = strstr(p_evt->params.rx_data.p_data,Network_Name);
app_uart_put(p_evt->params.rx_data.length);
length_SN = p_evt->params.rx_data.length - 12;
if(matched && p_evt->params.rx_data.length == 18 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3] == ':')
{
time=0;

 for(int i = 0; i < p_evt->params.rx_data.length; i++)
 {ACK_DATA[i] = p_evt->params.rx_data.p_data[i]+ m_key[i];}
 ble_nus_data_send(&m_nus, &ACK_DATA[0], &p_evt->params.rx_data.length, m_conn_handle);

    if(p_evt->params.rx_data.length > 10 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3] == ':' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 4] == 'E' && p_evt->params.rx_data.length <=20 )
    {
    app_uart_put('O');app_uart_put('K');
            time1[1] = p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1];
            time1[0] = p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 2];
            app_uart_put(time1[0]);
            app_uart_put(time1[1]);
    time = str_to_decimal(time1);
    }
}
else{app_uart_put('N');app_uart_put('O');app_uart_put('O');}
  
if(matched  && p_evt->params.rx_data.length == 18 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 8] == 'R' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 9] == 'B')
{
 for(int i = 0; i < p_evt->params.rx_data.length; i++)
 {ACK_DATA[i] = p_evt->params.rx_data.p_data[i]+ m_key[i];}
 ble_nus_data_send(&m_nus, &ACK_DATA[0], &p_evt->params.rx_data.length, m_conn_handle);

  if(p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3] == '2' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 4] == '5' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 5] == '1' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 6] == '1')
  {
  BAUD_115200_flag = 1;
  }
}

if(matched  && p_evt->params.rx_data.length == 16 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 6] == 'R' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 7] == 'B' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3] == '8' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 4] == '4')
{
 for(int i = 0; i < p_evt->params.rx_data.length; i++)
 {ACK_DATA[i] = p_evt->params.rx_data.p_data[i]+ m_key[i];}
 ACK_DATA[16] = SPACE[0] + m_key[16];
 ACK_DATA[17] = SPACE[0] + m_key[17];
 ble_nus_data_send(&m_nus, &ACK_DATA[0], &LEN, m_conn_handle);

 BAUD_4800_flag = 1;
}

if(matched && p_evt->params.rx_data.length == 16 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 6] == 'R' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 7] == 'B' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3] == '6' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 4] == '9')
{
 for(int i = 0; i < p_evt->params.rx_data.length; i++)
 {ACK_DATA[i] = p_evt->params.rx_data.p_data[i]+ m_key[i];}
 ACK_DATA[16] = SPACE[0] + m_key[16];
 ACK_DATA[17] = SPACE[0] + m_key[17];
 ble_nus_data_send(&m_nus, &ACK_DATA[0], &LEN, m_conn_handle);

 BAUD_9600_flag = 1;
}

if(matched && p_evt->params.rx_data.length == 17 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 7] == 'R' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 8] == 'B' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3] == '2' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 4] == '9'  && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 5] == '1')
{
 for(int i = 0; i < p_evt->params.rx_data.length; i++)
 {ACK_DATA[i] = p_evt->params.rx_data.p_data[i]+ m_key[i];}
 ACK_DATA[18] = SPACE[0] + m_key[18];
 ble_nus_data_send(&m_nus, &ACK_DATA[0], &LEN, m_conn_handle);

 BAUD_19200_flag = 1;
}

if(matched && p_evt->params.rx_data.length == 17 && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 7] == 'R' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 8] == 'B' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 3] == '4' && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 4] == '8'  && p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 5] == '3')
{
 for(int i = 0; i < p_evt->params.rx_data.length; i++)
 {ACK_DATA[i] = p_evt->params.rx_data.p_data[i]+ m_key[i];}
 ACK_DATA[17] = SPACE[0] + m_key[17];
 ble_nus_data_send(&m_nus, &ACK_DATA[0], &LEN, m_conn_handle);

 BAUD_38400_flag = 1;
}

if(matched /*&& matched_SN*/)
{
   app_uart_put('S');
   app_uart_put('N');
   while (c < length_SN) {
      DEVICE_CFGNAME[c] =  p_evt->params.rx_data.p_data[position+c-1];
      c++;
      app_uart_put(DEVICE_CFGNAME[c]);
   }

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    sd_ble_gap_device_name_set(&sec_mode,
                                    DEVICE_CFGNAME,
                                    strlen(DEVICE_CFGNAME));     
 // ble_advdata_set(&advdata, NULL);
}

     /*   for ( i = 0; i < p_evt->params.rx_data.length; i++)
        {   
            do
            {
              //  err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
         
            } while (err_code == NRF_ERROR_BUSY);
        }*/
    }
}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t           err_code;
    ble_nus_init_t     nus_init;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize NUS.
    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
        nrf_gpio_pin_toggle(PAIR_LED);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            nrf_gpio_pin_toggle(PAIR_LED);
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            nrf_gpio_pin_set(PAIR_LED);
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            nrf_gpio_pin_set(PAIR_LED);
            nrf_delay_ms(1000);
            nrf_gpio_pin_clear(PAIR_LED);
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
           /* err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);*/
            break;

        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            nrf_gpio_pin_toggle(PAIR_LED);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            nrf_gpio_pin_toggle(PAIR_LED);
            break;

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
#if 0
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {

        case APP_UART_DATA_READY:
           
         //  if(rs485_communication2 == 0)

         //  {
            nrf_gpio_pin_clear(TX_D);
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;         
            //rs485_communication2 = 1;
         //   }


 
          /*  if ((data_array[index - 1] == '\n') ||
                (data_array[index - 1] == '\r') ||
                (index >= m_ble_nus_max_data_len))
            {*/
        //  if(rs485_communication2 == 1)
         // {
             //   if (index > 0)
             //   {
                    NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                    NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                    do
                    {
                        uint16_t length = (uint16_t)index;
                        err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                        if ((err_code != NRF_ERROR_INVALID_STATE) &&
                            (err_code != NRF_ERROR_RESOURCES) &&
                            (err_code != NRF_ERROR_NOT_FOUND))
                        {
                            APP_ERROR_CHECK(err_code);
                        }
                    } while (err_code == NRF_ERROR_RESOURCES);
                 index = 0;
             //   }
          
        //   rs485_communication2 = 0;
         //  }
           //  nrf_gpio_pin_clear(TX_D);
            
           // }
            
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        case APP_UART_TX_EMPTY:
        nrf_gpio_pin_clear(TX_D);
        NRF_UART_TASK_STOPTX;
        break;

        default:
            break;
    }
}
#endif

void uart_event_handle(app_uart_evt_t * p_event)
{

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[uartIndex]));
            uartIndex++;
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        case APP_UART_TX_EMPTY:
        nrf_gpio_pin_clear(TX_D);
        NRF_UART_TASK_STOPTX;

        if(BAUD_115200_flag)
        {
        BAUD_115200_flag = 0;
        NRF_UART0->BAUDRATE = (UART_BAUDRATE_BAUDRATE_Baud115200 << UART_BAUDRATE_BAUDRATE_Pos);
        }
        if(BAUD_4800_flag)
        {
        BAUD_4800_flag = 0;
        NRF_UART0->BAUDRATE = (UART_BAUDRATE_BAUDRATE_Baud4800 << UART_BAUDRATE_BAUDRATE_Pos);
        }
        if(BAUD_9600_flag)
        {
        BAUD_9600_flag = 0;
        NRF_UART0->BAUDRATE = (UART_BAUDRATE_BAUDRATE_Baud9600 << UART_BAUDRATE_BAUDRATE_Pos);
        }
        if(BAUD_19200_flag)
        {
        BAUD_19200_flag = 0;
        NRF_UART0->BAUDRATE = (UART_BAUDRATE_BAUDRATE_Baud19200 << UART_BAUDRATE_BAUDRATE_Pos);
        }
        if(BAUD_38400_flag)
        {
        BAUD_38400_flag = 0;
        NRF_UART0->BAUDRATE = (UART_BAUDRATE_BAUDRATE_Baud38400 << UART_BAUDRATE_BAUDRATE_Pos);
        }
        break;

        default:
            break;
    }
}

/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UARTE_BAUDRATE_9600
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}

/**@brief Function for starting advertising.
 */
static void advertising_start(void)
{
    uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
}

static void tx_power_set(void)
{
    ret_code_t err_code = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, m_advertising.adv_handle, TX_POWER_LEVEL);
    APP_ERROR_CHECK(err_code);
}

void Delay(uint16_t count)
{
	uint16_t ii,jj;
	
	for(ii=0;ii<count;ii++) 
		for(jj=0;jj<10000;jj++);
}

void reverse(char *str, int len) 
{ 
    int i=0, j=len-1, temp; 
    while (i<j) 
    { 
        temp = str[i]; 
        str[i] = str[j]; 
        str[j] = temp; 
        i++; j--; 
    } 
} 

int intToStr(int x, char str[], int d) 
{ 
    int i = 0; 
    while (x) 
    { 
        str[i++] = (x%10) + '0'; 
        x = x/10; 
    } 
  
    // If number of digits required is more, then 
    // add 0s at the beginning 
    while (i < d) 
        str[i++] = '0'; 
  
    reverse(str, i); 
    str[i] = '\0'; 
    return i; 
} 

void ftoa(float n, char *res, int afterpoint) 
{ 
    // Extract integer part 
    int ipart = (int)n; 
  
    // Extract floating part 
    float fpart = n - (float)ipart; 
  
    // convert integer part to string 
    int i = intToStr(ipart, res, 0); 
  
    // check for display option after point 
    if (afterpoint != 0) 
    { 
        res[i] = '.';  // add dot 
  
        // Get the value of fraction part upto given no. 
        // of points after dot. The third parameter is needed 
        // to handle cases like 233.007 
        fpart = fpart * pow(10, afterpoint); 
  
        intToStr((int)fpart, res + i + 1, afterpoint); 
    } 
} 

/**@brief Application main function.
 */
void wdt_init(void)
{
NRF_WDT->CONFIG = (WDT_CONFIG_HALT_Pause << WDT_CONFIG_HALT_Pos) | ( WDT_CONFIG_SLEEP_Run << WDT_CONFIG_SLEEP_Pos); 
NRF_WDT->CRV = 9*32768; 
NRF_WDT->RREN |= WDT_RREN_RR0_Msk; 
NRF_WDT-> RR [0] = 0x6E524635UL;
NRF_WDT->TASKS_START = 1; 
}
void spi_init(void)
{

    nrf_drv_spi_config_t spi_config;                                          
    spi_config.frequency    = SPI_FREQUENCY_FREQUENCY_K500,             
    spi_config.mode         = NRF_DRV_SPI_MODE_3,                      
    spi_config.bit_order    = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST,         
    spi_config.ss_pin       = SPI_SS_PIN;
    spi_config.miso_pin     = SPI_MISO_PIN;
    spi_config.sck_pin      = SPI_SCK_PIN;
    spi_config.mosi_pin     = NRF_DRV_SPI_PIN_NOT_USED;
   // APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,spi_event_handler, NULL));
    APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,NULL, NULL));

}

int main(void)
{
uint8_t ID_BUF[8];
uint16_t DI;
uint16_t PREVSDI = 0;
uint16_t PRESSDI = 0;
uint16_t DI2;
uint16_t PREVSDI2 = 0;
uint16_t PRESSDI2 = 0;
uint16_t DI3;
uint16_t PREVSDI3 = 0;
uint16_t PRESSDI3 = 0;
uint16_t DI4;
uint16_t PREVSDI4 = 0;
uint16_t PRESSDI4 = 0;
uint16_t DI5;
uint16_t PREVSDI5 = 0;
uint16_t PRESSDI5 = 0;

u.ui32 = NRF_FICR->DEVICEID[0];
itoa(u.ui32,buffer,16);

for(int ii=0;ii<9;ii++)
{ID_BUF[ii]=buffer[ii];}

uint16_t value1,value2,value3,value4,value5,value6,value7,value8,value9,value10,value11,value12,value13,value14,value15,value16,value17,value18
,value19,value20,value21,value22,value23,value24,value25,value26,value27,value28,value29,value30,value31,value32;
uint16_t dlen,dlen1,dlen2,dlen3,dlen4,dlen5,dlen6,dlen7,dlen8,dlen9,dlen10,dlen11,dlen12,dlen13,dlen14,dlen15,dlen16,dlen17
,dlen18,dlen19,dlen20,dlen21,dlen22,dlen23,dlen24,dlen25,dlen26,dlen27,dlen28,dlen29,dlen30;
uint16_t len=18;

  nrf_gpio_cfg_output(TX_D);
  nrf_gpio_cfg_output(PAIR_LED);
  nrf_gpio_cfg_output(GPIO_1);
  nrf_gpio_cfg_output(GPIO_2);
 
  nrf_gpio_cfg_sense_input(IN1,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);
  nrf_gpio_cfg_sense_input(IN2,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);
  nrf_gpio_cfg_sense_input(IN3,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);
  nrf_gpio_cfg_sense_input(IN4,NRF_GPIO_PIN_PULLDOWN, NRF_GPIO_PIN_SENSE_LOW);
  nrf_gpio_cfg_sense_input(IN5,NRF_GPIO_PIN_PULLDOWN, NRF_GPIO_PIN_SENSE_LOW);

    bool erase_bonds;
    ret_code_t err_code;
    uint16_t length;

    // Initialize.
    uart_init();
    log_init();
    spi_init();
    timers_init();
    buttons_leds_init(&erase_bonds);


    flash_init();

    nrf_fstorage_erase(&fstorage,0x3f000,15,NULL);

    NRF_LOG_INFO("Writing \"%s\" to flash.", m_hello_world);
    nrf_fstorage_write(&fstorage, 0x3f000, m_hello_world, sizeof(m_hello_world), NULL);
     
    wait_for_flash_ready(&fstorage);
    NRF_LOG_INFO("Done.");

  nrf_fstorage_read(&fstorage, 0x3f000, &m_data, 12);

  for(int i = 0;i < sizeof(m_data) ; i++)
  {
  NRF_UART_TASK_STARTTX;
  nrf_gpio_pin_set(TX_D);

  app_uart_put(m_data[i]);
  }

    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();
   // wdt_init();
    application_timers_start();

    NRF_LOG_INFO("Debug logging for UART over RTT started.");
    advertising_start();
    tx_power_set();


for(int ii=0;ii<100;ii++)
{temperature();}
MODBUS();

    for (;;) {
             idle_state_handle();

//NRF_WDT->RR[0] = WDT_RR_RR_Reload;   
nrf_gpio_pin_set(GPIO_2); 
MODBUS();

            if(uartIndex != 0) {
                    Delay(100);
                    uartSubIdx =0;
                    do {
                          do	{
                                if(uartIndex < BLE_UART_LIMIT) length = (uint16_t)uartIndex;
                                else length = BLE_UART_LIMIT;
                                if(uartIndex == 35 || uartIndex == 27)
                               { memcpy (DATA_PACKECT, data_array, sizeof(data_array)); }
                               else
                                {memset(DATA_PACKECT, 0, sizeof(DATA_PACKECT)); }
                               //err_code = ble_nus_data_send(&m_nus, &DATA_PACKECT[0], &length, m_conn_handle);
                                if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                        (err_code != NRF_ERROR_RESOURCES) &&
                                        (err_code != NRF_ERROR_NOT_FOUND))	{
                                                      APP_ERROR_CHECK(err_code);
                                 }
                            } while (err_code == NRF_ERROR_RESOURCES);
                            if(uartIndex < BLE_UART_LIMIT) uartIndex = 0;
                            else {
                                  uartIndex = uartIndex - BLE_UART_LIMIT;
                                  uartSubIdx = uartSubIdx + BLE_UART_LIMIT;
                            }
                        } while (uartIndex > 0);
                }
                uartIndex = 0;

}}

Regards,

jagadeesh

Parents Reply Children
No Data
Related