This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Bus Fault after calling __get_FPSCR in FreeRTOS configPRE_SLEEP_PROCESSING(x)

I'm trying to set up a project with SDK 16.0.0 using FreeRTOS with the softdevice.  The device will be battery powered and therefore power management capabilities are required.

My freeRTOSConfig.h is the same as in the ble_app_hrs_freertos_pca10040_s132 with the following additions:

#if ( __FPU_PRESENT)
#define PWR_MGMT_FPU_SLEEP_PREPARE() pwr_mgmt_fpu_sleep_prepare()
extern void pwr_mgmt_fpu_sleep_prepare(void);
#else
#define PWR_MGMT_FPU_SLEEP_PREPARE()
#endif // NRF_PWR_MGMT_CONFIG_FPU_SUPPORT_ENABLED

#define configPRE_SLEEP_PROCESSING(x) PWR_MGMT_FPU_SLEEP_PREPARE()

#define configSUPPORT_STATIC_ALLOCATION

Based on this thread I tried to add pwr_mgmt_fpu_sleep_prepare in main.c, however my code gets a busfault any time I use the __get_FPSCR() or __set_FPSCR() macro.

My application works as expected except not sleeping when I comment out the FPSCR macros.

When I uncomment the macro's the busfault breakpoint triggers and the PC is stopped at address 0xA60.

Do I need to implement this sleep prepare step?

Why do these FPSCR macro's cause a bus fault?

Given:

1) I'm not even using the FPU.

2) This example only performs some I2C operations once per second

3) I have RTC2 enabled and operating at 32KHz with only overflow interrupt enabled ( for tracking time independent from freeRTOS )

4) I have an idle task hook that does NRF_LOG_FLUSH with NRF_LOG_ENABLED

Then will it be reasonable to expect the sd_app_evt_wait() call to sleep for some amount of time?  It seems at the moment it will never sleep despite every task being blocked/suspended.

Parents
  • Hi Anthony,

    my reply and its thread got deleted by  mistake. Sorry about that.

    What you said is correct, sorry for not seeing that the first time. The vApplicationIdleHook was being called too frequent to keep the logger thread active most of the time and your suggestions actually reduced the power consumption when logs are enabled.

    Without your change, the vApplicationIdleHook was unblocking the task that in turn tells the scheduler to abort the idle sequence. I thought that the scheduler will run the logger_task and resume the idle operation but then it would become a chain of block and unblock and the control never reaches to sleep.

    SDK example without changes and logs enabled.

    Anthony's change, the power consumption goes down

    Attaching the files with changes suggested by Anthony.

    /**
     * Copyright (c) 2016 - 2019, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    #include "sdk_common.h"
    #if NRF_MODULE_ENABLED(NRF_LOG)
    #include "app_util.h"
    #include "app_util_platform.h"
    #include "nrf_log.h"
    #include "nrf_log_internal.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_backend_interface.h"
    #include "nrf_log_str_formatter.h"
    #include "nrf_section.h"
    #include "nrf_ringbuf.h"
    #include "nrf_memobj.h"
    #include "nrf_atomic.h"
    #include <string.h>
    
    STATIC_ASSERT((NRF_LOG_BUFSIZE % 4) == 0);
    STATIC_ASSERT(IS_POWER_OF_TWO(NRF_LOG_BUFSIZE));
    
    #define NRF_LOG_BUF_WORDS (NRF_LOG_BUFSIZE/4)
    
    #if NRF_MODULE_ENABLED(FDS) && NRF_LOG_FILTERS_ENABLED
    #define LOG_CONFIG_LOAD_STORE_ENABLED 1
    #else
    #define LOG_CONFIG_LOAD_STORE_ENABLED 0
    #endif
    
    #if NRF_LOG_BUF_WORDS < 32
    #warning "NRF_LOG_BUFSIZE too small, significant number of logs may be lost."
    #endif
    
    NRF_MEMOBJ_POOL_DEF(log_mempool, NRF_LOG_MSGPOOL_ELEMENT_SIZE, NRF_LOG_MSGPOOL_ELEMENT_COUNT);
    NRF_RINGBUF_DEF(m_log_push_ringbuf, NRF_LOG_STR_PUSH_BUFFER_SIZE);
    
    #define NRF_LOG_BACKENDS_FULL           0xFF
    #define NRF_LOG_FILTER_BITS_PER_BACKEND 3
    #define NRF_LOG_MAX_BACKENDS           (32/NRF_LOG_FILTER_BITS_PER_BACKEND)
    #define NRF_LOG_MAX_HEXDUMP            (NRF_LOG_MSGPOOL_ELEMENT_SIZE*NRF_LOG_MSGPOOL_ELEMENT_COUNT/2)
    #define NRF_LOG_INVALID_BACKEND_U32    0xFFFFFFFF
    /**
     * brief An internal control block of the logger
     *
     * @note Circular buffer is using never cleared indexes and a mask. It means
     * that logger may break when indexes overflows. However, it is quite unlikely.
     * With rate of 1000 log entries with 2 parameters per second such situation
     * would happen after 12 days.
     */
    typedef struct
    {
        uint32_t                  wr_idx;          // Current write index (never reset)
        uint32_t                  rd_idx;          // Current read index  (never_reset)
        uint32_t                  mask;            // Size of buffer (must be power of 2) presented as mask
        uint32_t                  buffer[NRF_LOG_BUF_WORDS];
        nrf_log_timestamp_func_t  timestamp_func;  // A pointer to function that returns timestamp
        nrf_log_backend_t const * p_backend_head;
        nrf_atomic_flag_t         log_skipping;
        nrf_atomic_flag_t         log_skipped;
        nrf_atomic_u32_t          log_dropped_cnt;
        bool                      autoflush;
    } log_data_t;
    
    static log_data_t   m_log_data;
    
    
    NRF_LOG_MODULE_REGISTER();
    
    // Helper macros for section variables.
    #define NRF_LOG_DYNAMIC_SECTION_VARS_GET(i)        NRF_SECTION_ITEM_GET(log_dynamic_data, nrf_log_module_dynamic_data_t, (i))
    #define NRF_LOG_FILTER_SECTION_VARS_GET(i)         NRF_SECTION_ITEM_GET(log_filter_data, nrf_log_module_filter_data_t, (i))
    
    #define NRF_LOG_CONST_SECTION_VARS_GET(i)          NRF_SECTION_ITEM_GET(log_const_data, nrf_log_module_const_data_t, (i))
    #define NRF_LOG_CONST_SECTION_VARS_COUNT           NRF_SECTION_ITEM_COUNT(log_const_data, nrf_log_module_const_data_t)
    
    ret_code_t nrf_log_init(nrf_log_timestamp_func_t timestamp_func, uint32_t timestamp_freq)
    {
        (void)NRF_LOG_ITEM_DATA_CONST(app);
    
        if (NRF_LOG_USES_TIMESTAMP && (timestamp_func == NULL))
        {
            return NRF_ERROR_INVALID_PARAM;
        }
    
        m_log_data.mask         = NRF_LOG_BUF_WORDS - 1;
        m_log_data.wr_idx       = 0;
        m_log_data.rd_idx       = 0;
        m_log_data.log_skipped  = 0;
        m_log_data.log_skipping = 0;
        m_log_data.autoflush    = NRF_LOG_DEFERRED ? false : true;
        if (NRF_LOG_USES_TIMESTAMP)
        {
            nrf_log_str_formatter_timestamp_freq_set(timestamp_freq);
            m_log_data.timestamp_func = timestamp_func;
        }
    
        ret_code_t err_code = nrf_memobj_pool_init(&log_mempool);
        if (err_code != NRF_SUCCESS)
        {
            return err_code;
        }
    
        nrf_ringbuf_init(&m_log_push_ringbuf);
    
        uint32_t modules_cnt = NRF_LOG_CONST_SECTION_VARS_COUNT;
        uint32_t i;
        if (NRF_LOG_FILTERS_ENABLED)
        {
            uint32_t j;
            //sort modules by name
            for (i = 0; i < modules_cnt; i++)
            {
                uint32_t idx = 0;
    
                for (j = 0; j < modules_cnt; j++)
                {
                    if  (i != j)
                    {
                        char const * p_name0 = NRF_LOG_CONST_SECTION_VARS_GET(i)->p_module_name;
                        char const * p_name1 = NRF_LOG_CONST_SECTION_VARS_GET(j)->p_module_name;
                        if (strncmp(p_name0, p_name1, 20) > 0)
                        {
                            idx++;
                        }
                    }
    
                }
                nrf_log_module_dynamic_data_t * p_module_ddata = NRF_LOG_DYNAMIC_SECTION_VARS_GET(i);
                p_module_ddata->order_idx = idx;
            }
    
            /* Initialize filters */
            for (i = 0; i < modules_cnt; i++)
            {
                nrf_log_module_dynamic_data_t * p_module_ddata = NRF_LOG_DYNAMIC_SECTION_VARS_GET(i);
                nrf_log_module_filter_data_t * p_module_filter = NRF_LOG_FILTER_SECTION_VARS_GET(i);
                p_module_ddata->filter = 0;
                p_module_filter->filter_lvls = 0;
            }
        }
    
        return NRF_SUCCESS;
    }
    
    uint32_t nrf_log_module_cnt_get(void)
    {
        return NRF_LOG_CONST_SECTION_VARS_COUNT;
    }
    
    static ret_code_t module_idx_get(uint32_t * p_idx, bool ordered_idx)
    {
        if (ordered_idx)
        {
            uint32_t module_cnt = nrf_log_module_cnt_get();
            uint32_t i;
            for (i = 0; i < module_cnt; i++)
            {
                nrf_log_module_dynamic_data_t * p_module_data = NRF_LOG_DYNAMIC_SECTION_VARS_GET(i);
                if (p_module_data->order_idx == *p_idx)
                {
                    *p_idx = i;
                    return NRF_SUCCESS;
                }
            }
            return NRF_ERROR_NOT_FOUND;
        }
        else
        {
            return NRF_SUCCESS;
        }
    }
    const char * nrf_log_module_name_get(uint32_t module_id, bool ordered_idx)
    {
        if (module_idx_get(&module_id, ordered_idx) == NRF_SUCCESS)
        {
            nrf_log_module_const_data_t * p_module_data = NRF_LOG_CONST_SECTION_VARS_GET(module_id);
            return p_module_data->p_module_name;
        }
        else
        {
            return NULL;
        }
    }
    
    uint8_t nrf_log_color_id_get(uint32_t module_id, nrf_log_severity_t severity)
    {
        nrf_log_module_const_data_t * p_module_data = NRF_LOG_CONST_SECTION_VARS_GET(module_id);
        uint8_t color_id;
        switch (severity)
        {
        case NRF_LOG_SEVERITY_ERROR:
            color_id = NRF_LOG_ERROR_COLOR;
            break;
        case NRF_LOG_SEVERITY_WARNING:
            color_id = NRF_LOG_WARNING_COLOR;
            break;
        case NRF_LOG_SEVERITY_INFO:
            color_id = p_module_data->info_color_id;
            break;
        case NRF_LOG_SEVERITY_DEBUG:
            color_id = p_module_data->debug_color_id;
            break;
        default:
            color_id = 0;
            break;
        }
        return color_id;
    }
    
    static uint16_t higher_lvl_get(uint32_t lvls)
    {
        uint16_t top_lvl = 0;
        uint16_t tmp_lvl;
        uint32_t i;
    
        //Find highest level enabled by backends
        for (i = 0; i < (32/NRF_LOG_LEVEL_BITS); i+=NRF_LOG_LEVEL_BITS)
        {
            tmp_lvl = (uint16_t)BF_GET(lvls,NRF_LOG_LEVEL_BITS, i);
            if (tmp_lvl > top_lvl)
            {
                top_lvl = tmp_lvl;
            }
        }
        return top_lvl;
    }
    
    void nrf_log_module_filter_set(uint32_t backend_id, uint32_t module_id, nrf_log_severity_t severity)
    {
        if (NRF_LOG_FILTERS_ENABLED)
        {
            nrf_log_module_dynamic_data_t * p_module_data = NRF_LOG_DYNAMIC_SECTION_VARS_GET(module_id);
            nrf_log_module_filter_data_t *  p_filter      = NRF_LOG_FILTER_SECTION_VARS_GET(module_id);
    
            p_filter->filter_lvls &= ~BF_MASK(NRF_LOG_LEVEL_BITS, (NRF_LOG_LEVEL_BITS * backend_id));
            p_filter->filter_lvls |= BF_VAL(severity, NRF_LOG_LEVEL_BITS, (NRF_LOG_LEVEL_BITS * backend_id));
    
            p_module_data->filter = higher_lvl_get(p_filter->filter_lvls);
        }
    }
    
    static nrf_log_severity_t nrf_log_module_init_filter_get(uint32_t module_id)
    {
        nrf_log_module_const_data_t * p_module_data =
                                            NRF_LOG_CONST_SECTION_VARS_GET(module_id);
        return NRF_LOG_FILTERS_ENABLED ? p_module_data->initial_lvl : p_module_data->compiled_lvl;
    }
    
    nrf_log_severity_t nrf_log_module_filter_get(uint32_t backend_id,
                                                 uint32_t module_id,
                                                 bool ordered_idx,
                                                 bool dynamic)
    {
        nrf_log_severity_t severity = NRF_LOG_SEVERITY_NONE;
        if (NRF_LOG_FILTERS_ENABLED && dynamic)
        {
            if (module_idx_get(&module_id, ordered_idx) == NRF_SUCCESS)
            {
                nrf_log_module_filter_data_t * p_filter = NRF_LOG_FILTER_SECTION_VARS_GET(module_id);
                severity = (nrf_log_severity_t)BF_GET(p_filter->filter_lvls,
                                                      NRF_LOG_LEVEL_BITS,
                                                      (backend_id*NRF_LOG_LEVEL_BITS));
            }
        }
        else if (!dynamic)
        {
            if (module_idx_get(&module_id, ordered_idx) == NRF_SUCCESS)
            {
                nrf_log_module_const_data_t * p_module_data =
                                                    NRF_LOG_CONST_SECTION_VARS_GET(module_id);
                severity = (nrf_log_severity_t)p_module_data->compiled_lvl;
            }
        }
        return severity;
    }
    /**
     * Function examines current header and omits packets which are in progress.
     */
    static bool invalid_packets_omit(nrf_log_header_t const * p_header, uint32_t * p_rd_idx)
    {
        bool ret = false;
        if (p_header->base.generic.in_progress == 1)
        {
            switch (p_header->base.generic.type)
            {
            case HEADER_TYPE_STD:
                *p_rd_idx += (HEADER_SIZE + p_header->base.std.nargs);
                break;
            case HEADER_TYPE_HEXDUMP:
                *p_rd_idx += (HEADER_SIZE + p_header->base.hexdump.len);
                break;
            default:
                break;
            }
            ret = true;
        }
        return ret;
    }
    /**
     * @brief Skips the oldest, not processed logs to make space for new logs.
     * @details This function moves forward read index to prepare space for new logs.
     */
    
    static uint32_t log_skip(void)
    {
        uint16_t dropped = 0;
    
        (void)nrf_atomic_flag_set(&m_log_data.log_skipped);
        (void)nrf_atomic_flag_set(&m_log_data.log_skipping);
    
        uint32_t           rd_idx = m_log_data.rd_idx;
        uint32_t           mask   = m_log_data.mask;
        nrf_log_header_t * p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
        nrf_log_header_t   header;
    
        // Skip packets that may be invalid (interrupted while being in progress)
        do {
            if (invalid_packets_omit(p_header, &rd_idx))
            {
                //something was omitted. Point to new header and try again.
                p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
            }
            else
            {
                break;
            }
        } while (true);
    
        uint32_t i;
        for (i = 0; i < HEADER_SIZE; i++)
        {
            ((uint32_t*)&header)[i] = m_log_data.buffer[rd_idx++ & mask];
        }
    
        switch (header.base.generic.type)
        {
            case HEADER_TYPE_HEXDUMP:
                dropped = header.dropped;
                rd_idx += CEIL_DIV(header.base.hexdump.len, sizeof(uint32_t));
                break;
            case HEADER_TYPE_STD:
                dropped = header.dropped;
                rd_idx += header.base.std.nargs;
                break;
            default:
                ASSERT(false);
                break;
        }
    
        uint32_t log_skipping_tmp = nrf_atomic_flag_clear_fetch(&m_log_data.log_skipping);
        //update read index only if log_skip was not interrupted by another log skip
        if (log_skipping_tmp)
        {
            m_log_data.rd_idx = rd_idx;
        }
    
        return (uint32_t)dropped;
    }
    
    /**
     * @brief Function for getting number of dropped logs. Dropped counter is reset after reading.
     *
     * @return Number of dropped logs saturated to 16 bits.
     */
    static inline uint32_t dropped_sat16_get(void)
    {
        uint32_t dropped = nrf_atomic_u32_fetch_store(&m_log_data.log_dropped_cnt, 0);
        return __USAT(dropped, 16); //Saturate to 16 bits
    }
    
    
    static inline void std_header_set(uint32_t severity_mid,
                                          char const * const p_str,
                                          uint32_t nargs,
                                          uint32_t wr_idx,
                                          uint32_t mask)
    {
    
    
        //Prepare header - in reverse order to ensure that packet type is validated (set to STD as last action)
        uint32_t module_id = severity_mid >> NRF_LOG_MODULE_ID_POS;
        uint32_t dropped   = dropped_sat16_get();
        ASSERT(module_id < nrf_log_module_cnt_get());
        m_log_data.buffer[(wr_idx + 1) & mask] = module_id | (dropped << 16);
    
        if (NRF_LOG_USES_TIMESTAMP)
        {
            m_log_data.buffer[(wr_idx + 2) & mask] = m_log_data.timestamp_func();
        }
    
        nrf_log_header_t * p_header    = (nrf_log_header_t *)&m_log_data.buffer[wr_idx & mask];
        p_header->base.std.severity    = severity_mid & NRF_LOG_LEVEL_MASK;
        p_header->base.std.nargs       = nargs;
        p_header->base.std.addr        = ((uint32_t)(p_str) & STD_ADDR_MASK);
        p_header->base.std.type        = HEADER_TYPE_STD;
        p_header->base.std.in_progress = 0;
    }
    
    extern void vLogPendingHook( void );
    
    /**
     * @brief Allocates chunk in a buffer for one entry and injects overflow if
     * there is no room for requested entry.
     *
     * @param content_len   Number of 32bit arguments. In case of allocating for hex dump it
     *                      is the size of the buffer in 32bit words (ceiled).
     * @param p_wr_idx      Pointer to write index.
     *
     * @return True if successful allocation, false otherwise.
     *
     */
    static inline bool buf_prealloc(uint32_t content_len, uint32_t * p_wr_idx, bool std)
    {
        uint32_t req_len = content_len + HEADER_SIZE;
        bool     ret            = true;
        CRITICAL_REGION_ENTER();
        *p_wr_idx = m_log_data.wr_idx;
        uint32_t available_words = (m_log_data.mask + 1) - (m_log_data.wr_idx - m_log_data.rd_idx);
        while (req_len > available_words)
        {
            UNUSED_RETURN_VALUE(nrf_atomic_u32_add(&m_log_data.log_dropped_cnt, 1));
            if (NRF_LOG_ALLOW_OVERFLOW)
            {
                uint32_t dropped_in_skip = log_skip();
                UNUSED_RETURN_VALUE(nrf_atomic_u32_add(&m_log_data.log_dropped_cnt, dropped_in_skip));
                available_words = (m_log_data.mask + 1) - (m_log_data.wr_idx - m_log_data.rd_idx);
            }
            else
            {
                ret = false;
                break;
            }
        }
    
        if (ret)
        {
            nrf_log_main_header_t invalid_header;
            invalid_header.raw = 0;
    
            if (std)
            {
                invalid_header.std.type        = HEADER_TYPE_STD;
                invalid_header.std.in_progress = 1;
                invalid_header.std.nargs       = content_len;
            }
            else
            {
                invalid_header.hexdump.type = HEADER_TYPE_HEXDUMP;
                invalid_header.hexdump.in_progress = 1;
                invalid_header.hexdump.len = content_len;
            }
    
            nrf_log_main_header_t * p_header =
                       (nrf_log_main_header_t *)&m_log_data.buffer[m_log_data.wr_idx & m_log_data.mask];
    
            p_header->raw = invalid_header.raw;
    
            m_log_data.wr_idx += req_len;
        }
    
        CRITICAL_REGION_EXIT();
    
        vLogPendingHook();
    
        return ret;
    }
    
    char const * nrf_log_push(char * const p_str)
    {
        if ((m_log_data.autoflush) || (p_str == NULL))
        {
            return p_str;
        }
    
        size_t ssize = strlen(p_str) + 1; // + 1 for null termination
        uint8_t * p_dst;
        // Allocate space in the ring buffer. It may be smaller than the requested string in case of buffer wrapping or when the ring buffer size is too small.
        // Once the string is copied into the buffer, the space is immediately freed. The string is kept in the buffer but can be overwritten.
        // It is done that way because there is no other place where space could be freed since string processing happens in
        // the logger backends, often by modules which are generic and not aware of internals of the logger.
        if (nrf_ringbuf_alloc(&m_log_push_ringbuf, &p_dst, &ssize, true) == NRF_SUCCESS)
        {
            ret_code_t err;
    
            memcpy(p_dst, p_str, ssize);
    
            //Terminate in case string was partial.
            p_dst[ssize - 1] = '\0';
    
            err = nrf_ringbuf_put(&m_log_push_ringbuf, ssize);
            ASSERT(err == NRF_SUCCESS);
    
            //Immediately free the space where string was put.
            err = nrf_ringbuf_free(&m_log_push_ringbuf, ssize);
            ASSERT(err == NRF_SUCCESS);
    
            return (char const *)p_dst;
        }
        else
        {
            return NULL;
        }
    }
    
    static inline void std_n(uint32_t           severity_mid,
                             char const * const p_str,
                             uint32_t const *   args,
                             uint32_t           nargs)
    {
        uint32_t mask   = m_log_data.mask;
        uint32_t wr_idx;
    
        if (buf_prealloc(nargs, &wr_idx, true))
        {
            // Proceed only if buffer was successfully preallocated.
    
            uint32_t data_idx = wr_idx + HEADER_SIZE;
            uint32_t i;
            for (i = 0; i < nargs; i++)
            {
                m_log_data.buffer[data_idx++ & mask] =args[i];
            }
            std_header_set(severity_mid, p_str, nargs, wr_idx, mask);
        }
        if (m_log_data.autoflush)
        {
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_ENTER();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
    
            NRF_LOG_FLUSH();
    
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_EXIT();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
        }
    
    }
    
    void nrf_log_frontend_std_0(uint32_t severity_mid, char const * const p_str)
    {
        std_n(severity_mid, p_str, NULL, 0);
    }
    
    
    void nrf_log_frontend_std_1(uint32_t            severity_mid,
                                char const * const p_str,
                                uint32_t           val0)
    {
        uint32_t args[] = {val0};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_2(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1)
    {
        uint32_t args[] = {val0, val1};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_3(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2)
    {
        uint32_t args[] = {val0, val1, val2};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_4(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2,
                                uint32_t           val3)
    {
        uint32_t args[] = {val0, val1, val2, val3};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_5(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2,
                                uint32_t           val3,
                                uint32_t           val4)
    {
        uint32_t args[] = {val0, val1, val2, val3, val4};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_6(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2,
                                uint32_t           val3,
                                uint32_t           val4,
                                uint32_t           val5)
    {
        uint32_t args[] = {val0, val1, val2, val3, val4, val5};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_hexdump(uint32_t           severity_mid,
                                  const void * const p_data,
                                  uint16_t           length)
    {
        uint32_t mask   = m_log_data.mask;
    
        uint32_t wr_idx;
        if (buf_prealloc(CEIL_DIV(length, sizeof(uint32_t)), &wr_idx, false))
        {
            uint32_t header_wr_idx = wr_idx;
            wr_idx += HEADER_SIZE;
    
            uint32_t space0 = sizeof(uint32_t) * (m_log_data.mask + 1 - (wr_idx & mask));
            if (length <= space0)
            {
                memcpy(&m_log_data.buffer[wr_idx & mask], p_data, length);
            }
            else
            {
                memcpy(&m_log_data.buffer[wr_idx & mask], p_data, space0);
                memcpy(&m_log_data.buffer[0], &((uint8_t *)p_data)[space0], length - space0);
            }
    
            //Prepare header - in reverse order to ensure that packet type is validated (set to HEXDUMP as last action)
            if (NRF_LOG_USES_TIMESTAMP)
            {
               m_log_data.buffer[(header_wr_idx + 2) & mask] = m_log_data.timestamp_func();
            }
    
            uint32_t module_id = severity_mid >> NRF_LOG_MODULE_ID_POS;
            uint32_t dropped   = dropped_sat16_get();
            m_log_data.buffer[(header_wr_idx + 1) & mask] = module_id | (dropped << 16);
            //Header prepare
            nrf_log_header_t * p_header = (nrf_log_header_t *)&m_log_data.buffer[header_wr_idx & mask];
            p_header->base.hexdump.severity    = severity_mid & NRF_LOG_LEVEL_MASK;
            p_header->base.hexdump.offset      = 0;
            p_header->base.hexdump.len         = length;
            p_header->base.hexdump.type        = HEADER_TYPE_HEXDUMP;
            p_header->base.hexdump.in_progress = 0;
    
    
    
        }
    
        if (m_log_data.autoflush)
        {
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_ENTER();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
    
            NRF_LOG_FLUSH();
    
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_EXIT();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
        }
    }
    
    
    bool buffer_is_empty(void)
    {
        return (m_log_data.rd_idx == m_log_data.wr_idx);
    }
    
    bool nrf_log_frontend_dequeue(void)
    {
    
        if (buffer_is_empty())
        {
            return false;
        }
        m_log_data.log_skipped      = 0;
        //It has to be ensured that reading rd_idx occurs after skipped flag is cleared.
        __DSB();
        uint32_t           rd_idx   = m_log_data.rd_idx;
        uint32_t           mask     = m_log_data.mask;
        nrf_log_header_t * p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
        nrf_log_header_t   header;
        nrf_memobj_t *     p_msg_buf = NULL;
        size_t             memobj_offset = 0;
        uint32_t           severity = 0;
    
        // Skip any in progress packets.
        do {
            if (invalid_packets_omit(p_header, &rd_idx) && (m_log_data.log_skipped == 0))
            {
                //Check if end of data is not reached.
                if (rd_idx >= m_log_data.wr_idx)
                {
                    m_log_data.rd_idx     = m_log_data.wr_idx;
                    return false;
                }
                //something was omitted. Point to new header and try again.
                p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
            }
            else
            {
                break;
            }
        } while (true);
    
        uint32_t i;
        for (i = 0; i < HEADER_SIZE; i++)
        {
            ((uint32_t*)&header)[i] = m_log_data.buffer[rd_idx++ & mask];
        }
    
        if (header.base.generic.type == HEADER_TYPE_HEXDUMP)
        {
            uint32_t orig_data_len  = header.base.hexdump.len;
            uint32_t data_len       = MIN(header.base.hexdump.len, NRF_LOG_MAX_HEXDUMP); //limit the data
            header.base.hexdump.len = data_len;
            uint32_t msg_buf_size8  = sizeof(uint32_t)*HEADER_SIZE + data_len;
            severity = header.base.hexdump.severity;
            p_msg_buf = nrf_memobj_alloc(&log_mempool, msg_buf_size8);
    
            if (p_msg_buf)
            {
                nrf_memobj_get(p_msg_buf);
                nrf_memobj_write(p_msg_buf, &header, HEADER_SIZE*sizeof(uint32_t), memobj_offset);
                memobj_offset += HEADER_SIZE*sizeof(uint32_t);
    
                uint32_t space0 = sizeof(uint32_t) * (mask + 1 - (rd_idx & mask));
                if (data_len > space0)
                        {
                    uint8_t * ptr0 = space0 ?
                                     (uint8_t *)&m_log_data.buffer[rd_idx & mask] :
                                     (uint8_t *)&m_log_data.buffer[0];
                    uint8_t   len0 = space0 ? space0 : data_len;
                    uint8_t * ptr1 = space0 ?
                                     (uint8_t *)&m_log_data.buffer[0] : NULL;
                    uint8_t len1 = space0 ? data_len - space0 : 0;
    
                    nrf_memobj_write(p_msg_buf, ptr0, len0, memobj_offset);
                    memobj_offset += len0;
                    if (ptr1)
                    {
                        nrf_memobj_write(p_msg_buf, ptr1, len1, memobj_offset);
                    }
                }
                else
                {
                    uint8_t * p_data = (uint8_t *)&m_log_data.buffer[rd_idx & mask];
                    nrf_memobj_write(p_msg_buf, p_data, data_len, memobj_offset);
                }
                rd_idx += CEIL_DIV(orig_data_len, 4);
            }
        }
        else if (header.base.generic.type == HEADER_TYPE_STD) // standard entry
        {
            header.base.std.nargs = MIN(header.base.std.nargs, NRF_LOG_MAX_NUM_OF_ARGS);
            uint32_t msg_buf_size32 = HEADER_SIZE + header.base.std.nargs;
            severity = header.base.std.severity;
    
            p_msg_buf = nrf_memobj_alloc(&log_mempool, msg_buf_size32*sizeof(uint32_t));
    
            if (p_msg_buf)
            {
                nrf_memobj_get(p_msg_buf);
                nrf_memobj_write(p_msg_buf, &header, HEADER_SIZE*sizeof(uint32_t), memobj_offset);
                memobj_offset += HEADER_SIZE*sizeof(uint32_t);
    
                for (i = 0; i < header.base.std.nargs; i++)
                {
                    nrf_memobj_write(p_msg_buf, &m_log_data.buffer[rd_idx++ & mask],
                                     sizeof(uint32_t), memobj_offset);
                    memobj_offset += sizeof(uint32_t);
                }
            }
        }
        else
        {
            //Do nothing. In case of log overflow buffer can contain corrupted data.
        }
    
        if (p_msg_buf)
        {
            nrf_log_backend_t const * p_backend = m_log_data.p_backend_head;
            if (NRF_LOG_ALLOW_OVERFLOW && m_log_data.log_skipped)
            {
                // Check if any log was skipped during log processing. Do not forward log if skipping 
                // occured because data may be invalid.
                nrf_memobj_put(p_msg_buf);
            }
            else
            {
                while (p_backend)
                {
                    bool entry_accepted = false;
                    if (nrf_log_backend_is_enabled(p_backend) == true)
                    {
                        if (NRF_LOG_FILTERS_ENABLED)
                        {
                            uint8_t backend_id = nrf_log_backend_id_get(p_backend);
                            nrf_log_module_filter_data_t * p_module_filter =
                                                     NRF_LOG_FILTER_SECTION_VARS_GET(header.module_id);
                            uint32_t backend_lvl = BF_GET(p_module_filter->filter_lvls,
                                                          NRF_LOG_LEVEL_BITS,
                                                          (backend_id*NRF_LOG_LEVEL_BITS));
    
                            //Degrade INFO_RAW level to INFO.
                            severity = (severity == NRF_LOG_SEVERITY_INFO_RAW) ?
                                                                     NRF_LOG_SEVERITY_INFO : severity;
                            if (backend_lvl >= severity)
                            {
                                entry_accepted = true;
                            }
                        }
                        else
                        {
                            (void)severity;
                            entry_accepted = true;
                        }
                    }
                    if (entry_accepted)
                    {
                        nrf_log_backend_put(p_backend, p_msg_buf);
                    }
                    p_backend = p_backend->p_cb->p_next;
                }
    
                nrf_memobj_put(p_msg_buf);
    
                if (NRF_LOG_ALLOW_OVERFLOW)
                {
                    // Read index can be moved forward only if dequeueing process was not interrupt by
                    // skipping procedure. If NRF_LOG_ALLOW_OVERFLOW is set then in case of buffer gets full
                    // and new logger entry occurs, oldest entry is removed. In that case read index is
                    // changed and updating it here would corrupt the internal circular buffer.
                    CRITICAL_REGION_ENTER();
                    if (m_log_data.log_skipped == 0)
                    {
                        m_log_data.rd_idx = rd_idx;
                    }
                    CRITICAL_REGION_EXIT();
                }
                else
                {
                    m_log_data.rd_idx = rd_idx;
                }
            }
        }
        else
        {
            //Could not allocate memobj - backends are not freeing them on time.
            nrf_log_backend_t const * p_backend = m_log_data.p_backend_head;
            //Flush all backends
            while (p_backend)
            {
                nrf_log_backend_flush(p_backend);
                p_backend = p_backend->p_cb->p_next;
            }
            NRF_LOG_WARNING("Backends flushed");
        }
    
        return buffer_is_empty() ? false : true;
    }
    
    static int32_t backend_id_assign(void)
    {
        int32_t candidate_id;
        nrf_log_backend_t const * p_backend;
        bool id_available;
        for (candidate_id = 0; candidate_id < NRF_LOG_MAX_BACKENDS; candidate_id++)
        {
            p_backend = m_log_data.p_backend_head;
            id_available = true;
            while (p_backend)
            {
                if (nrf_log_backend_id_get(p_backend) == candidate_id)
                {
                    id_available = false;
                    break;
                }
                p_backend = p_backend->p_cb->p_next;
            }
            if (id_available)
            {
                return candidate_id;
            }
        }
        return -1;
    }
    
    int32_t nrf_log_backend_add(nrf_log_backend_t const * p_backend, nrf_log_severity_t severity)
    {
        int32_t id = backend_id_assign();
        if (id == -1)
        {
            return id;
        }
    
        nrf_log_backend_id_set(p_backend, id);
        //add to list
        if (m_log_data.p_backend_head == NULL)
        {
           m_log_data.p_backend_head   = p_backend;
           p_backend->p_cb->p_next = NULL;
        }
        else
        {
            p_backend->p_cb->p_next = m_log_data.p_backend_head->p_cb->p_next;
            m_log_data.p_backend_head->p_cb->p_next = p_backend;
        }
    
        if (NRF_LOG_FILTERS_ENABLED)
        {
            uint32_t i;
            for (i = 0; i < nrf_log_module_cnt_get(); i++)
            {
                nrf_log_severity_t buildin_lvl = nrf_log_module_init_filter_get(i);
                nrf_log_severity_t actual_severity = MIN(buildin_lvl, severity);
                nrf_log_module_filter_set(nrf_log_backend_id_get(p_backend), i, actual_severity);
            }
        }
    
        return id;
    }
    
    void nrf_log_backend_remove(nrf_log_backend_t const * p_backend)
    {
        nrf_log_backend_t const * p_curr = m_log_data.p_backend_head;
        nrf_log_backend_t const * p_prev = NULL;
        while (p_curr != p_backend)
        {
            p_prev = p_curr;
            p_curr = p_curr->p_cb->p_next;
        }
    
        if (p_prev)
        {
            p_prev->p_cb->p_next = p_backend->p_cb->p_next;
        }
        else
        {
            m_log_data.p_backend_head = NULL;
        }
    
        p_backend->p_cb->id = NRF_LOG_BACKEND_INVALID_ID;
    }
    
    void nrf_log_panic(void)
    {
        nrf_log_backend_t const * p_backend = m_log_data.p_backend_head;
        m_log_data.autoflush = true;
        while (p_backend)
        {
            nrf_log_backend_enable(p_backend);
            nrf_log_backend_panic_set(p_backend);
            p_backend = p_backend->p_cb->p_next;
        }
    }
    
    #if NRF_MODULE_ENABLED(LOG_CONFIG_LOAD_STORE)
    #include "fds.h"
    #define LOG_CONFIG_FILE_ID   0x106E
    #define LOG_CONFIG_RECORD_ID 0x3427
    
    ret_code_t nrf_log_config_store(void)
    {
        fds_record_desc_t desc = {0};
        fds_find_token_t  token = {0};
        fds_record_t      record = {
                .file_id = LOG_CONFIG_FILE_ID,
                .key     = LOG_CONFIG_RECORD_ID,
                .data = {
                        .p_data       = NRF_LOG_FILTER_SECTION_VARS_GET(0),
                        .length_words = NRF_SECTION_LENGTH(log_filter_data)/sizeof(uint32_t)
                }
        };
        ret_code_t ret = fds_record_find(LOG_CONFIG_FILE_ID, LOG_CONFIG_RECORD_ID, &desc, &token);
        if (ret == NRF_SUCCESS)
        {
            ret = fds_record_update(&desc, &record);
            NRF_LOG_INFO("Logger configuration file updated with result:%d", ret);
        }
        else if (ret == FDS_ERR_NOT_FOUND)
        {
            ret = fds_record_write(&desc, &record);
            NRF_LOG_INFO("Logger configuration file written with result:%d", ret);
        }
        else
        {
            ret = NRF_ERROR_INTERNAL;
        }
        return ret;
    }
    
    ret_code_t nrf_log_config_load(void)
    {
        fds_record_desc_t desc = {0};
        fds_find_token_t  token = {0};
    
        ret_code_t ret = fds_record_find(LOG_CONFIG_FILE_ID, LOG_CONFIG_RECORD_ID, &desc, &token);
        if (ret == NRF_SUCCESS)
        {
            fds_flash_record_t record = {0};
            ret = fds_record_open(&desc, &record);
            if (ret == NRF_SUCCESS)
            {
                void * p_dest = (void *)NRF_LOG_FILTER_SECTION_VARS_GET(0);
                uint32_t length   = NRF_SECTION_LENGTH(log_filter_data);
                memcpy(p_dest, record.p_data, length);
                ret = fds_record_close(&desc);
            }
        }
        else if (ret == FDS_ERR_NOT_FOUND)
        {
            NRF_LOG_WARNING("Logger configuration file not found.");
            ret = NRF_ERROR_NOT_FOUND;
        }
        else
        {
            ret = NRF_ERROR_INTERNAL;
        }
    
        return ret;
    }
    #endif //LOG_CONFIG_LOAD_STORE_ENABLED
    
    #if NRF_LOG_CLI_CMDS && NRF_CLI_ENABLED
    #include "nrf_cli.h"
    
    typedef void (*nrf_log_cli_backend_cmd_t)(nrf_cli_t const *         p_cli,
                                              nrf_log_backend_t const * p_backend,
                                              size_t                    argc,
                                              char * *                  argv);
    
    static const char * m_severity_lvls[] = {
            "none",
            "error",
            "warning",
            "info",
            "debug",
    };
    
    static const char * m_severity_lvls_sorted[] = {
            "debug",
            "error",
            "info",
            "none",
            "warning",
    };
    
    /**
     * @brief Function for finding backend instance with given name.
     *
     * @param p_name Name of the backend instance.
     *
     * @return Pointer to the instance or NULL.
     *
     */
    static nrf_log_backend_t const * backend_find(char const * p_name)
    {
        size_t num_of_backends;
        nrf_log_backend_t const * p_backend;
    
        num_of_backends = NRF_SECTION_ITEM_COUNT(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t);
        for (size_t i = 0; i < num_of_backends; i++)
        {
            p_backend = NRF_SECTION_ITEM_GET(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t, i);
            if (strcmp(p_name, p_backend->p_name) == 0)
            {
                return p_backend;
            }
        }
        return NULL;
    }
    
    /**
     * @brief Function for executing command on given backend.
     */
    static void nrf_cli_backend_cmd_execute(nrf_cli_t const *         p_cli,
                                            size_t                    argc,
                                            char * *                  argv,
                                            nrf_log_cli_backend_cmd_t func)
    {
        //Based on the structure of backend commands, name of the backend can be found at -1 (log backend <name> command).
        char const * p_backend_name = argv[-1];
    
        nrf_log_backend_t const * p_backend = backend_find(p_backend_name);
    
        if (p_backend)
        {
            func(p_cli, p_backend, argc, argv);
        }
        else
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Invalid backend: %s\r\n", p_backend_name);
        }
    }
    
    
    static void log_status(nrf_cli_t const *         p_cli,
                           nrf_log_backend_t const * p_backend,
                           size_t                    argc,
                           char * *                  argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        uint32_t modules_cnt = nrf_log_module_cnt_get();
        uint32_t i;
    
    
        if (!nrf_log_backend_is_enabled(p_backend))
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Logs are halted!\r\n");
        }
        nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "%-40s | current | built-in \r\n", "module_name");
        nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "----------------------------------------------------------\r\n");
        for (i = 0; i < modules_cnt; i++)
        {
            uint32_t backend_id = p_backend->p_cb->id;
            nrf_log_severity_t module_dynamic_lvl =
                                  nrf_log_module_filter_get(backend_id, i, true, true);
            nrf_log_severity_t module_compiled_lvl =
                                  nrf_log_module_filter_get(backend_id, i, true, false);
            nrf_log_severity_t actual_compiled_lvl =
                                  MIN(module_compiled_lvl, (nrf_log_severity_t)NRF_LOG_DEFAULT_LEVEL);
    
            nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "%-40s | %-7s | %s%s\r\n",
                                      nrf_log_module_name_get(i, true),
                                      m_severity_lvls[module_dynamic_lvl],
                                      m_severity_lvls[actual_compiled_lvl],
                                      actual_compiled_lvl < module_compiled_lvl ? "*" : "");
        }
    }
    
    
    static void log_self_status(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_status(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_backend_status(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_status);
    }
    
    
    static bool module_id_get(const char * p_name, uint32_t * p_id)
    {
        uint32_t modules_cnt = nrf_log_module_cnt_get();
        const char * p_tmp_name;
        uint32_t j;
        for (j = 0; j < modules_cnt; j++)
        {
            p_tmp_name = nrf_log_module_name_get(j, false);
            if (strncmp(p_tmp_name, p_name, 32) == 0)
            {
                *p_id = j;
                break;
            }
        }
        return (j != modules_cnt);
    }
    
    
    static bool module_id_filter_set(uint32_t backend_id,
                                     uint32_t module_id,
                                     nrf_log_severity_t lvl)
    {
        nrf_log_severity_t buildin_lvl = nrf_log_module_filter_get(backend_id, module_id, false, false);
        if (lvl > buildin_lvl)
        {
            return false;
        }
        else
        {
            nrf_log_module_filter_set(backend_id, module_id, lvl);
            return true;
        }
    }
    
    
    static void log_ctrl(nrf_cli_t const *         p_cli,
                         nrf_log_backend_t const * p_backend,
                         size_t                    argc,
                         char * *                  argv)
    {
        nrf_log_severity_t lvl;
        uint32_t first_m_name_idx;
        uint32_t i;
        bool     all_modules = false;
        uint32_t backend_id = p_backend->p_cb->id;
    
        if (argc >  0)
        {
            if (strncmp(argv[0], "enable", 7) == 0)
            {
                if (argc == 1)
                {
                    nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Bad parameter count.\r\n");
                    return;
                }
    
                if (argc == 2)
                {
                    all_modules = true;
                }
    
                for (i = 0; i < ARRAY_SIZE(m_severity_lvls); i++)
                {
                    if (strncmp(argv[1], m_severity_lvls[i], 10) == 0)
                    {
                        break;
                    }
                }
    
                if (i == ARRAY_SIZE(m_severity_lvls))
                {
                    nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Unknown severity level: %s\r\n", argv[1]);
                    return;
                }
    
                lvl = (nrf_log_severity_t)i;
                first_m_name_idx = 2;
    
            }
            else if (strncmp(argv[0], "disable", 8) == 0)
            {
                if (argc == 1)
                {
                    all_modules = true;
                }
                lvl = NRF_LOG_SEVERITY_NONE;
                first_m_name_idx = 1;
            }
            else
            {
                nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Unknown option: %s\r\n", argv[0]);
                return;
            }
    
            if (all_modules)
            {
                for (i = 0; i < nrf_log_module_cnt_get(); i++)
                {
                    if (module_id_filter_set(backend_id, i, lvl) == false)
                    {
                        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR,
                                        "Level unavailable for module: %s\r\n",
                                        nrf_log_module_name_get(i, false));
                    }
                }
            }
            else
            {
                for (i = first_m_name_idx; i < argc; i++)
                {
                    uint32_t module_id = 0;
                    if (module_id_get(argv[i], &module_id) == false)
                    {
                        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Unknown module:%s\r\n", argv[i]);
                    }
                    else if (module_id_filter_set(backend_id, module_id, lvl) == false)
                    {
                        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR,
                                        "Level unavailable for module: %s\r\n",
                                        nrf_log_module_name_get(module_id, false));
                    }
                    else
                    {
                        /* empty */
                    }
                }
            }
        }
    }
    
    
    static void log_self_ctrl(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_ctrl(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_backend_ctrl(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_ctrl);
    }
    
    static void module_name_get(size_t idx, nrf_cli_static_entry_t * p_static);
    
    NRF_CLI_CREATE_DYNAMIC_CMD(m_module_name, module_name_get);
    
    static void module_name_get(size_t idx, nrf_cli_static_entry_t * p_static)
    {
        p_static->handler = NULL;
        p_static->p_help  = NULL;
        p_static->p_subcmd = &m_module_name;
        p_static->p_syntax = nrf_log_module_name_get(idx, true);
    }
    
    
    static void severity_lvl_get(size_t idx, nrf_cli_static_entry_t * p_static)
    {
        p_static->handler = NULL;
        p_static->p_help  = NULL;
        p_static->p_subcmd = &m_module_name;
        p_static->p_syntax = (idx < ARRAY_SIZE(m_severity_lvls_sorted)) ?
                                                        m_severity_lvls_sorted[idx] : NULL;
    }
    
    NRF_CLI_CREATE_DYNAMIC_CMD(m_severity_lvl, severity_lvl_get);
    
    
    static void log_halt(nrf_cli_t const *         p_cli,
                         nrf_log_backend_t const * p_backend,
                         size_t                    argc,
                         char * *                  argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        nrf_log_backend_disable(p_backend);
    }
    
    
    static void log_backend_halt(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_halt);
    }
    
    
    static void log_self_halt(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_halt(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_go(nrf_cli_t const *         p_cli,
                       nrf_log_backend_t const * p_backend,
                       size_t                    argc,
                       char * *                  argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        nrf_log_backend_enable(p_backend);
    }
    
    
    static void log_backend_go(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_go);
    }
    
    
    static void log_self_go(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_go(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_cmd_backends_list(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        if (nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
        size_t num_of_backends;
    
        num_of_backends = NRF_SECTION_ITEM_COUNT(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t);
        for (size_t i = 0; i < num_of_backends; i++)
        {
            nrf_log_backend_t const * p_backend =
                               NRF_SECTION_ITEM_GET(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t, i);
    
            if (p_backend->p_cb->id == NRF_LOG_BACKEND_INVALID_ID)
            {
                nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL,
                                "%s\r\n"
                                "\t- Status: deactivated\r\n\r\n",
                                p_backend->p_name);
            }
            else
            {
                nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL,
                                "%s\r\n"
                                "\t- Status: %s\r\n"
                                "\t- ID: %d\r\n\r\n",
                                p_backend->p_name,
                                p_backend->p_cb->enabled ? "enabled" : "disabled",
                                p_backend->p_cb->id);
            }
        }
    }
    
    
    NRF_CLI_CREATE_STATIC_SUBCMD_SET(m_sub_log_backend)
    {
        NRF_CLI_CMD(disable, &m_module_name,
            "'log disable <module_0> .. <module_n>' disables logs in specified "
            "modules (all if no modules specified).",
            log_backend_ctrl),
        NRF_CLI_CMD(enable, &m_severity_lvl,
            "'log enable <level> <module_0> ...  <module_n>' enables logs up to given level in "
            "specified modules (all if no modules specified).",
            log_backend_ctrl),
        NRF_CLI_CMD(go, NULL, "Resume logging", log_backend_go),
        NRF_CLI_CMD(halt, NULL, "Halt logging", log_backend_halt),
        NRF_CLI_CMD(status, NULL, "Logger status", log_backend_status),
        NRF_CLI_SUBCMD_SET_END
    };
    
    static void backend_name_get(size_t idx, nrf_cli_static_entry_t * p_static)
    {
        p_static->handler = NULL;
        p_static->p_help  = NULL;
        p_static->p_subcmd = &m_sub_log_backend;
        p_static->p_syntax  = NULL;
    
        nrf_log_backend_t const * p_backend;
        size_t                    active_idx = 0;
        uint32_t                  i;
    
        for (i = 0; i < NRF_SECTION_ITEM_COUNT(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t); i++)
        {
            p_backend = NRF_SECTION_ITEM_GET(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t, i);
            if (p_backend->p_cb->id != NRF_LOG_BACKEND_INVALID_ID)
            {
                if (idx == active_idx)
                {
                    p_static->p_syntax = p_backend->p_name;
                    break;
                }
                else
                {
                    active_idx++;
                }
            }
        }
    }
    
    NRF_CLI_CREATE_DYNAMIC_CMD(m_backend_name_dynamic, backend_name_get);
    
    static void log_config_load_cmd(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        if (nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
    
    #if LOG_CONFIG_LOAD_STORE_ENABLED
        if (nrf_log_config_load() == NRF_SUCCESS)
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "Configuration loaded.\r\n");
        }
        else
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Failed to load the configuration.\r\n");
        }
    #else
        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Not supported.\r\n");
    #endif
    }
    
    static void log_config_store_cmd(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        if (nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
    
    #if LOG_CONFIG_LOAD_STORE_ENABLED
        if (nrf_log_config_store() == NRF_SUCCESS)
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "Configuration stored.\r\n");
        }
        else
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Failed to store the configuration.\r\n");
        }
    #else
        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Not supported.\r\n");
    #endif
    }
    
    NRF_CLI_CREATE_STATIC_SUBCMD_SET(m_sub_log_config)
    {
        NRF_CLI_CMD(load, NULL, "Load configuration stored in non-volatile memory.", log_config_load_cmd),
        NRF_CLI_CMD(store, NULL, "Store current configuration in non-volatile memory.", log_config_store_cmd),
        NRF_CLI_SUBCMD_SET_END
    };
    
    NRF_CLI_CREATE_STATIC_SUBCMD_SET(m_sub_log_stat)
    {
        NRF_CLI_CMD(backend, &m_backend_name_dynamic, "Logger backends commands.", NULL),
        NRF_CLI_CMD(config, &m_sub_log_config, "Manage logger configuration", NULL),
        NRF_CLI_CMD(disable, &m_module_name,
            "'log disable <module_0> .. <module_n>' disables logs in specified "
            "modules (all if no modules specified).",
            log_self_ctrl),
        NRF_CLI_CMD(enable, &m_severity_lvl,
            "'log enable <level> <module_0> ...  <module_n>' enables logs up to given level in "
            "specified modules (all if no modules specified).",
            log_self_ctrl),
        NRF_CLI_CMD(go, NULL, "Resume logging", log_self_go),
        NRF_CLI_CMD(halt, NULL, "Halt logging", log_self_halt),
        NRF_CLI_CMD(list_backends, NULL, "Lists logger backends.", log_cmd_backends_list),
        NRF_CLI_CMD(status, NULL, "Logger status", log_self_status),
        NRF_CLI_SUBCMD_SET_END
    };
    
    static void log_cmd(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        if ((argc == 1) || nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
    
        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "%s:%s%s\r\n", argv[0], " unknown parameter: ", argv[1]);
    }
    
    NRF_CLI_CMD_REGISTER(log, &m_sub_log_stat, "Commands for controlling logger", log_cmd);
    
    #endif //NRF_LOG_CLI_CMDS
    
    #endif // NRF_MODULE_ENABLED(NRF_LOG)
    

    /**
     * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    // Board/nrf6310/ble/ble_app_hrs_rtx/main.c
    /**
     *
     * @brief Heart Rate Service Sample Application with RTX main file.
     *
     * This file contains the source code for a sample application using RTX and the
     * Heart Rate service (and also Battery and Device Information services).
     * This application uses the @ref srvlib_conn_params module.
     */
    
    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "app_error.h"
    #include "ble.h"
    #include "ble_hci.h"
    #include "ble_srv_common.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_bas.h"
    #include "ble_hrs.h"
    #include "ble_dis.h"
    #include "ble_conn_params.h"
    #include "sensorsim.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_sdh_freertos.h"
    #include "app_timer.h"
    #include "peer_manager.h"
    #include "peer_manager_handler.h"
    #include "bsp_btn_ble.h"
    #include "FreeRTOS.h"
    #include "task.h"
    #include "timers.h"
    #include "semphr.h"
    #include "fds.h"
    #include "ble_conn_state.h"
    #include "nrf_drv_clock.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    
    #define DEVICE_NAME                         "Nordic_HRM"                            /**< Name of device. Will be included in the advertising data. */
    #define MANUFACTURER_NAME                   "NordicSemiconductor"                   /**< Manufacturer. Will be passed to Device Information Service. */
    
    #define APP_BLE_OBSERVER_PRIO               3                                       /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    #define APP_BLE_CONN_CFG_TAG                1                                       /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define APP_ADV_INTERVAL                    300                                     /**< The advertising interval (in units of 0.625 ms. This value corresponds to 187.5 ms). */
    #define APP_ADV_DURATION                    18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define BATTERY_LEVEL_MEAS_INTERVAL         2000                                    /**< Battery level measurement interval (ms). */
    #define MIN_BATTERY_LEVEL                   81                                      /**< Minimum simulated battery level. */
    #define MAX_BATTERY_LEVEL                   100                                     /**< Maximum simulated battery level. */
    #define BATTERY_LEVEL_INCREMENT             1                                       /**< Increment between each simulated battery level measurement. */
    
    #define HEART_RATE_MEAS_INTERVAL            1000                                    /**< Heart rate measurement interval (ms). */
    #define MIN_HEART_RATE                      140                                     /**< Minimum heart rate as returned by the simulated measurement function. */
    #define MAX_HEART_RATE                      300                                     /**< Maximum heart rate as returned by the simulated measurement function. */
    #define HEART_RATE_INCREMENT                10                                      /**< Value by which the heart rate is incremented/decremented for each call to the simulated measurement function. */
    
    #define RR_INTERVAL_INTERVAL                300                                     /**< RR interval interval (ms). */
    #define MIN_RR_INTERVAL                     100                                     /**< Minimum RR interval as returned by the simulated measurement function. */
    #define MAX_RR_INTERVAL                     500                                     /**< Maximum RR interval as returned by the simulated measurement function. */
    #define RR_INTERVAL_INCREMENT               1                                       /**< Value by which the RR interval is incremented/decremented for each call to the simulated measurement function. */
    
    #define SENSOR_CONTACT_DETECTED_INTERVAL    5000                                    /**< Sensor Contact Detected toggle interval (ms). */
    
    #define MIN_CONN_INTERVAL                   MSEC_TO_UNITS(400, UNIT_1_25_MS)        /**< Minimum acceptable connection interval (0.4 seconds). */
    #define MAX_CONN_INTERVAL                   MSEC_TO_UNITS(650, UNIT_1_25_MS)        /**< Maximum acceptable connection interval (0.65 second). */
    #define SLAVE_LATENCY                       0                                       /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                    MSEC_TO_UNITS(4000, UNIT_10_MS)         /**< Connection supervisory time-out (4 seconds). */
    
    #define FIRST_CONN_PARAMS_UPDATE_DELAY      5000                                    /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY       30000                                   /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT        3                                       /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define SEC_PARAM_BOND                      1                                       /**< Perform bonding. */
    #define SEC_PARAM_MITM                      0                                       /**< Man In The Middle protection not required. */
    #define SEC_PARAM_LESC                      0                                       /**< LE Secure Connections not enabled. */
    #define SEC_PARAM_KEYPRESS                  0                                       /**< Keypress notifications not enabled. */
    #define SEC_PARAM_IO_CAPABILITIES           BLE_GAP_IO_CAPS_NONE                    /**< No I/O capabilities. */
    #define SEC_PARAM_OOB                       0                                       /**< Out Of Band data not available. */
    #define SEC_PARAM_MIN_KEY_SIZE              7                                       /**< Minimum encryption key size. */
    #define SEC_PARAM_MAX_KEY_SIZE              16                                      /**< Maximum encryption key size. */
    
    #define DEAD_BEEF                           0xDEADBEEF                              /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define OSTIMER_WAIT_FOR_QUEUE              2                                       /**< Number of ticks to wait for the timer queue to be ready */
    
    
    BLE_BAS_DEF(m_bas);                                                 /**< Battery service instance. */
    BLE_HRS_DEF(m_hrs);                                                 /**< Heart rate service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                 /**< Advertising module instance. */
    
    static uint16_t m_conn_handle         = BLE_CONN_HANDLE_INVALID;    /**< Handle of the current connection. */
    static bool     m_rr_interval_enabled = true;                       /**< Flag for enabling and disabling the registration of new RR interval measurements (the purpose of disabling this is just to test sending HRM without RR interval data. */
    
    static sensorsim_cfg_t   m_battery_sim_cfg;                         /**< Battery Level sensor simulator configuration. */
    static sensorsim_state_t m_battery_sim_state;                       /**< Battery Level sensor simulator state. */
    static sensorsim_cfg_t   m_heart_rate_sim_cfg;                      /**< Heart Rate sensor simulator configuration. */
    static sensorsim_state_t m_heart_rate_sim_state;                    /**< Heart Rate sensor simulator state. */
    static sensorsim_cfg_t   m_rr_interval_sim_cfg;                     /**< RR Interval sensor simulator configuration. */
    static sensorsim_state_t m_rr_interval_sim_state;                   /**< RR Interval sensor simulator state. */
    
    static ble_uuid_t m_adv_uuids[] =                                   /**< Universally unique service identifiers. */
    {
        {BLE_UUID_HEART_RATE_SERVICE, BLE_UUID_TYPE_BLE},
        {BLE_UUID_BATTERY_SERVICE, BLE_UUID_TYPE_BLE},
        {BLE_UUID_DEVICE_INFORMATION_SERVICE, BLE_UUID_TYPE_BLE}
    };
    
    static TimerHandle_t m_battery_timer;                               /**< Definition of battery timer. */
    static TimerHandle_t m_heart_rate_timer;                            /**< Definition of heart rate timer. */
    static TimerHandle_t m_rr_interval_timer;                           /**< Definition of RR interval timer. */
    static TimerHandle_t m_sensor_contact_timer;                        /**< Definition of sensor contact detected timer. */
    
    #if NRF_LOG_ENABLED
    static TaskHandle_t m_logger_thread;                                /**< Definition of Logger thread. */
    #endif
    
    static void advertising_start(void * p_erase_bonds);
    
    
    /**@brief Callback function for asserts in the SoftDevice.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyze
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in]   line_num   Line number of the failing ASSERT call.
     * @param[in]   file_name  File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    
    /**@brief Function for handling Peer Manager events.
     *
     * @param[in] p_evt  Peer Manager event.
     */
    static void pm_evt_handler(pm_evt_t const * p_evt)
    {
        bool delete_bonds = false;
    
        pm_handler_on_pm_evt(p_evt);
        pm_handler_flash_clean(p_evt);
    
        switch (p_evt->evt_id)
        {
            case PM_EVT_PEERS_DELETE_SUCCEEDED:
                advertising_start(&delete_bonds);
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief Function for performing battery measurement and updating the Battery Level characteristic
     *        in Battery Service.
     */
    static void battery_level_update(void)
    {
        ret_code_t err_code;
        uint8_t  battery_level;
    
        battery_level = (uint8_t)sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg);
    
        err_code = ble_bas_battery_level_update(&m_bas, battery_level, BLE_CONN_HANDLE_ALL);
        if ((err_code != NRF_SUCCESS) &&
            (err_code != NRF_ERROR_INVALID_STATE) &&
            (err_code != NRF_ERROR_RESOURCES) &&
            (err_code != NRF_ERROR_BUSY) &&
            (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
           )
        {
            APP_ERROR_HANDLER(err_code);
        }
    }
    
    
    /**@brief Function for handling the Battery measurement timer time-out.
     *
     * @details This function will be called each time the battery level measurement timer expires.
     *
     * @param[in] xTimer Handler to the timer that called this function.
     *                   You may get identifier given to the function xTimerCreate using pvTimerGetTimerID.
     */
    static void battery_level_meas_timeout_handler(TimerHandle_t xTimer)
    {
        UNUSED_PARAMETER(xTimer);
        battery_level_update();
    }
    
    
    /**@brief Function for handling the Heart rate measurement timer time-out.
     *
     * @details This function will be called each time the heart rate measurement timer expires.
     *          It will exclude RR Interval data from every third measurement.
     *
     * @param[in] xTimer Handler to the timer that called this function.
     *                   You may get identifier given to the function xTimerCreate using pvTimerGetTimerID.
     */
    static void heart_rate_meas_timeout_handler(TimerHandle_t xTimer)
    {
        static uint32_t cnt = 0;
        ret_code_t      err_code;
        uint16_t        heart_rate;
    
        UNUSED_PARAMETER(xTimer);
    
        heart_rate = (uint16_t)sensorsim_measure(&m_heart_rate_sim_state, &m_heart_rate_sim_cfg);
    
        cnt++;
        err_code = ble_hrs_heart_rate_measurement_send(&m_hrs, heart_rate);
        if ((err_code != NRF_SUCCESS) &&
            (err_code != NRF_ERROR_INVALID_STATE) &&
            (err_code != NRF_ERROR_RESOURCES) &&
            (err_code != NRF_ERROR_BUSY) &&
            (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
           )
        {
            APP_ERROR_HANDLER(err_code);
        }
    
        // Disable RR Interval recording every third heart rate measurement.
        // NOTE: An application will normally not do this. It is done here just for testing generation
        // of messages without RR Interval measurements.
        m_rr_interval_enabled = ((cnt % 3) != 0);
    }
    
    
    /**@brief Function for handling the RR interval timer time-out.
     *
     * @details This function will be called each time the RR interval timer expires.
     *
     * @param[in] xTimer Handler to the timer that called this function.
     *                   You may get identifier given to the function xTimerCreate using pvTimerGetTimerID.
     */
    static void rr_interval_timeout_handler(TimerHandle_t xTimer)
    {
        UNUSED_PARAMETER(xTimer);
    
        if (m_rr_interval_enabled)
        {
            uint16_t rr_interval;
    
            rr_interval = (uint16_t)sensorsim_measure(&m_rr_interval_sim_state,
                                                      &m_rr_interval_sim_cfg);
            ble_hrs_rr_interval_add(&m_hrs, rr_interval);
        }
    }
    
    
    /**@brief Function for handling the Sensor Contact Detected timer time-out.
     *
     * @details This function will be called each time the Sensor Contact Detected timer expires.
     *
     * @param[in] xTimer Handler to the timer that called this function.
     *                   You may get identifier given to the function xTimerCreate using pvTimerGetTimerID.
     */
    static void sensor_contact_detected_timeout_handler(TimerHandle_t xTimer)
    {
        static bool sensor_contact_detected = false;
    
        UNUSED_PARAMETER(xTimer);
    
        sensor_contact_detected = !sensor_contact_detected;
        ble_hrs_sensor_contact_detected_update(&m_hrs, sensor_contact_detected);
    }
    
    
    /**@brief Function for the Timer initialization.
     *
     * @details Initializes the timer module. This creates and starts application timers.
     */
    static void timers_init(void)
    {
        // Initialize timer module.
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    
        // Create timers.
        m_battery_timer = xTimerCreate("BATT",
                                       BATTERY_LEVEL_MEAS_INTERVAL,
                                       pdTRUE,
                                       NULL,
                                       battery_level_meas_timeout_handler);
        m_heart_rate_timer = xTimerCreate("HRT",
                                          HEART_RATE_MEAS_INTERVAL,
                                          pdTRUE,
                                          NULL,
                                          heart_rate_meas_timeout_handler);
        m_rr_interval_timer = xTimerCreate("RRT",
                                           RR_INTERVAL_INTERVAL,
                                           pdTRUE,
                                           NULL,
                                           rr_interval_timeout_handler);
        m_sensor_contact_timer = xTimerCreate("SCT",
                                              SENSOR_CONTACT_DETECTED_INTERVAL,
                                              pdTRUE,
                                              NULL,
                                              sensor_contact_detected_timeout_handler);
    
        /* Error checking */
        if ( (NULL == m_battery_timer)
             || (NULL == m_heart_rate_timer)
             || (NULL == m_rr_interval_timer)
             || (NULL == m_sensor_contact_timer) )
        {
            APP_ERROR_HANDLER(NRF_ERROR_NO_MEM);
        }
    }
    
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the
     *          device including the device name, appearance, and the preferred connection parameters.
     */
    static void gap_params_init(void)
    {
        ret_code_t              err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *)DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_HEART_RATE_SENSOR_HEART_RATE_BELT);
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for initializing the GATT module. */
    static void gatt_init(void)
    {
        ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing services that will be used by the application.
     *
     * @details Initialize the Heart Rate, Battery and Device Information services.
     */
    static void services_init(void)
    {
        ret_code_t         err_code;
        ble_hrs_init_t     hrs_init;
        ble_bas_init_t     bas_init;
        ble_dis_init_t     dis_init;
        nrf_ble_qwr_init_t qwr_init = {0};
        uint8_t            body_sensor_location;
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize Heart Rate Service.
        body_sensor_location = BLE_HRS_BODY_SENSOR_LOCATION_FINGER;
    
        memset(&hrs_init, 0, sizeof(hrs_init));
    
        hrs_init.evt_handler                 = NULL;
        hrs_init.is_sensor_contact_supported = true;
        hrs_init.p_body_sensor_location      = &body_sensor_location;
    
        // Here the sec level for the Heart Rate Service can be changed/increased.
        hrs_init.hrm_cccd_wr_sec = SEC_OPEN;
        hrs_init.bsl_rd_sec      = SEC_OPEN;
    
        err_code = ble_hrs_init(&m_hrs, &hrs_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize Battery Service.
        memset(&bas_init, 0, sizeof(bas_init));
    
        // Here the sec level for the Battery Service can be changed/increased.
        bas_init.bl_rd_sec        = SEC_OPEN;
        bas_init.bl_cccd_wr_sec   = SEC_OPEN;
        bas_init.bl_report_rd_sec = SEC_OPEN;
    
        bas_init.evt_handler          = NULL;
        bas_init.support_notification = true;
        bas_init.p_report_ref         = NULL;
        bas_init.initial_batt_level   = 100;
    
        err_code = ble_bas_init(&m_bas, &bas_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize Device Information Service.
        memset(&dis_init, 0, sizeof(dis_init));
    
        ble_srv_ascii_to_utf8(&dis_init.manufact_name_str, (char *)MANUFACTURER_NAME);
    
        dis_init.dis_char_rd_sec = SEC_OPEN;
    
        err_code = ble_dis_init(&dis_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for initializing the sensor simulators. */
    static void sensor_simulator_init(void)
    {
        m_battery_sim_cfg.min          = MIN_BATTERY_LEVEL;
        m_battery_sim_cfg.max          = MAX_BATTERY_LEVEL;
        m_battery_sim_cfg.incr         = BATTERY_LEVEL_INCREMENT;
        m_battery_sim_cfg.start_at_max = true;
    
        sensorsim_init(&m_battery_sim_state, &m_battery_sim_cfg);
    
        m_heart_rate_sim_cfg.min          = MIN_HEART_RATE;
        m_heart_rate_sim_cfg.max          = MAX_HEART_RATE;
        m_heart_rate_sim_cfg.incr         = HEART_RATE_INCREMENT;
        m_heart_rate_sim_cfg.start_at_max = false;
    
        sensorsim_init(&m_heart_rate_sim_state, &m_heart_rate_sim_cfg);
    
        m_rr_interval_sim_cfg.min          = MIN_RR_INTERVAL;
        m_rr_interval_sim_cfg.max          = MAX_RR_INTERVAL;
        m_rr_interval_sim_cfg.incr         = RR_INTERVAL_INCREMENT;
        m_rr_interval_sim_cfg.start_at_max = false;
    
        sensorsim_init(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg);
    }
    
    
    /**@brief   Function for starting application timers.
     * @details Timers are run after the scheduler has started.
     */
    static void application_timers_start(void)
    {
        // Start application timers.
        if (pdPASS != xTimerStart(m_battery_timer, OSTIMER_WAIT_FOR_QUEUE))
        {
            APP_ERROR_HANDLER(NRF_ERROR_NO_MEM);
        }
        if (pdPASS != xTimerStart(m_heart_rate_timer, OSTIMER_WAIT_FOR_QUEUE))
        {
            APP_ERROR_HANDLER(NRF_ERROR_NO_MEM);
        }
        if (pdPASS != xTimerStart(m_rr_interval_timer, OSTIMER_WAIT_FOR_QUEUE))
        {
            APP_ERROR_HANDLER(NRF_ERROR_NO_MEM);
        }
        if (pdPASS != xTimerStart(m_sensor_contact_timer, OSTIMER_WAIT_FOR_QUEUE))
        {
            APP_ERROR_HANDLER(NRF_ERROR_NO_MEM);
        }
    }
    
    
    /**@brief Function for handling the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module which
     *          are passed to the application.
     *          @note All this function does is to disconnect. This could have been done by simply
     *                setting the disconnect_on_fail config parameter, but instead we use the event
     *                handler mechanism to demonstrate its use.
     *
     * @param[in]   p_evt   Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        ret_code_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling a Connection Parameters error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module. */
    static void conn_params_init(void)
    {
        ret_code_t             err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = m_hrs.hrm_handles.cccd_handle;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        ret_code_t err_code;
    
        err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                NRF_LOG_INFO("Fast advertising.");
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                NRF_LOG_DEBUG("GATT Client Timeout.");
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                NRF_LOG_DEBUG("GATT Server Timeout.");
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**@brief Function for initializing the BLE stack.
     *
     * @details Initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    static void bsp_event_handler(bsp_event_t event)
    {
        ret_code_t err_code;
    
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief Function for the Peer Manager initialization. */
    static void peer_manager_init(void)
    {
        ble_gap_sec_params_t sec_param;
        ret_code_t           err_code;
    
        err_code = pm_init();
        APP_ERROR_CHECK(err_code);
    
        memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));
    
        // Security parameters to be used for all security procedures.
        sec_param.bond           = SEC_PARAM_BOND;
        sec_param.mitm           = SEC_PARAM_MITM;
        sec_param.lesc           = SEC_PARAM_LESC;
        sec_param.keypress       = SEC_PARAM_KEYPRESS;
        sec_param.io_caps        = SEC_PARAM_IO_CAPABILITIES;
        sec_param.oob            = SEC_PARAM_OOB;
        sec_param.min_key_size   = SEC_PARAM_MIN_KEY_SIZE;
        sec_param.max_key_size   = SEC_PARAM_MAX_KEY_SIZE;
        sec_param.kdist_own.enc  = 1;
        sec_param.kdist_own.id   = 1;
        sec_param.kdist_peer.enc = 1;
        sec_param.kdist_peer.id  = 1;
    
        err_code = pm_sec_params_set(&sec_param);
        APP_ERROR_CHECK(err_code);
    
        err_code = pm_register(pm_evt_handler);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Clear bond information from persistent storage. */
    static void delete_bonds(void)
    {
        ret_code_t err_code;
    
        NRF_LOG_INFO("Erase bonds!");
    
        err_code = pm_peers_delete();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for initializing the Advertising functionality. */
    static void advertising_init(void)
    {
        ret_code_t             err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type               = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance      = true;
        init.advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
        init.advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.advdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        ret_code_t err_code;
        bsp_event_t startup_event;
    
        err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for starting advertising. */
    static void advertising_start(void * p_erase_bonds)
    {
        bool erase_bonds = *(bool*)p_erase_bonds;
    
        if (erase_bonds)
        {
            delete_bonds();
            // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event.
        }
        else
        {
            ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    void vLogPendingHook( void )
    {
    #if NRF_LOG_ENABLED
        BaseType_t result = pdFAIL;
    
        if ( __get_IPSR() != 0 )
        {
            BaseType_t higherPriorityTaskWoken = pdFALSE;
            result = xTaskNotifyFromISR( m_logger_thread, 0, eSetValueWithoutOverwrite, &higherPriorityTaskWoken );
    
            if ( pdFAIL != result )
            {
            portYIELD_FROM_ISR( higherPriorityTaskWoken );
            }
        }
        else
        {
            UNUSED_RETURN_VALUE(xTaskNotify( m_logger_thread, 0, eSetValueWithoutOverwrite ));
        }
    
    #endif //NRF_LOG_ENABLED
    }
    
    #if NRF_LOG_ENABLED
    /**@brief Thread for handling the logger.
     *
     * @details This thread is responsible for processing log entries if logs are deferred.
     *          Thread flushes all log entries and suspends. It is resumed by idle task hook.
     *
     * @param[in]   arg   Pointer used for passing some arbitrary information (context) from the
     *                    osThreadCreate() call to the thread.
     */
    static void logger_thread(void * arg)
    {
        UNUSED_PARAMETER(arg);
    
        while (1)
        {
            NRF_LOG_FLUSH();
    
            vTaskSuspend(NULL); // Suspend myself
        }
    }
    #endif //NRF_LOG_ENABLED
    
    /**@brief A function which is hooked to idle task.
     * @note Idle hook must be enabled in FreeRTOS configuration (configUSE_IDLE_HOOK).
     */
    void vApplicationIdleHook( void )
    {
    #if NRF_LOG_ENABLED
         //vTaskResume(m_logger_thread);
    #endif
    }
    
    
    /**@brief Function for initializing the clock.
     */
    static void clock_init(void)
    {
        ret_code_t err_code = nrf_drv_clock_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for application main entry.
     */
    int main(void)
    {
        bool erase_bonds;
    
        // Initialize modules.
        log_init();
        clock_init();
    
        // Do not start any interrupt that uses system functions before system initialisation.
        // The best solution is to start the OS before any other initalisation.
    
    #if NRF_LOG_ENABLED
        // Start execution.
        if (pdPASS != xTaskCreate(logger_thread, "LOGGER", 256, NULL, 1, &m_logger_thread))
        {
            APP_ERROR_HANDLER(NRF_ERROR_NO_MEM);
        }
    #endif
    
        // Activate deep sleep mode.
        SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
    
        // Configure and initialize the BLE stack.
        ble_stack_init();
    
        // Initialize modules.
        timers_init();
        buttons_leds_init(&erase_bonds);
        gap_params_init();
        gatt_init();
        advertising_init();
        services_init();
        sensor_simulator_init();
        conn_params_init();
        peer_manager_init();
        application_timers_start();
    
        // Create a FreeRTOS task for the BLE stack.
        // The task will run advertising_start() before entering its loop.
        nrf_sdh_freertos_init(advertising_start, &erase_bonds);
    
        NRF_LOG_INFO("HRS FreeRTOS example started.");
        // Start FreeRTOS scheduler.
        vTaskStartScheduler();
    
        for (;;)
        {
            APP_ERROR_HANDLER(NRF_ERROR_FORBIDDEN);
        }
    }
    
    
    

    Thank you for your work Anthony.

  • Thanks for following up on this!  I hope the improvements to the example will make it into the next SDK release!

Reply Children
Related