Hi,
I'm relatively new to your product line, but have been spending a bit of time trying to bring the volume control functionality into a SDK16/PCA10056/s140 configuration. I'm using the nRF52480DK.
I have worked through a number of button handling and pairing issues, but appear to have hit a wall with sending the comands to the device. Simply, I'm not seeing any response at the iPhone. The project is based on your peripheral ble_app_hids_keyboard example, with changes to reflect this example: https://github.com/Rallare/nrf51_ble_app_hids_kbd_consumercontrol/tree/SDK15
Does anyone on your team have a recommendation on what I should do next?
Thanks in advance,
D
#include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "nrf_assert.h" #include "app_error.h" #include "ble.h" #include "ble_err.h" #include "ble_hci.h" #include "ble_srv_common.h" #include "ble_advertising.h" #include "ble_advdata.h" #include "ble_hids.h" #include "ble_bas.h" #include "ble_dis.h" #include "ble_conn_params.h" #include "sensorsim.h" #include "bsp_btn_ble.h" #include "app_scheduler.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "app_timer.h" #include "peer_manager.h" #include "fds.h" #include "ble_conn_state.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "nrf_pwr_mgmt.h" #include "peer_manager_handler.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #define DEVICE_NAME "Volume Demo" /**< Name of device. Will be included in the advertising data. */ #define MANUFACTURER_NAME "NordicSemiconductor" /**< Manufacturer. Will be passed to Device Information Service. */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define BATTERY_LEVEL_MEAS_INTERVAL APP_TIMER_TICKS(2000) /**< Battery level measurement interval (ticks). */ #define MIN_BATTERY_LEVEL 81 /**< Minimum simulated battery level. */ #define MAX_BATTERY_LEVEL 100 /**< Maximum simulated battery level. */ #define BATTERY_LEVEL_INCREMENT 1 /**< Increment between each simulated battery level measurement. */ #define PNP_ID_VENDOR_ID_SOURCE 0x02 /**< Vendor ID Source. */ #define PNP_ID_VENDOR_ID 0x1915 /**< Vendor ID. */ #define PNP_ID_PRODUCT_ID 0xEEEE /**< Product ID. */ #define PNP_ID_PRODUCT_VERSION 0x0001 /**< Product Version. */ #define APP_ADV_FAST_INTERVAL 0x0028 /**< Fast advertising interval (in units of 0.625 ms. This value corresponds to 25 ms.). */ #define APP_ADV_SLOW_INTERVAL 0x0C80 /**< Slow advertising interval (in units of 0.625 ms. This value corrsponds to 2 seconds). */ #define APP_ADV_FAST_DURATION 3000 /**< The advertising duration of fast advertising in units of 10 milliseconds. */ #define APP_ADV_SLOW_DURATION 18000 /**< The advertising duration of slow advertising in units of 10 milliseconds. */ /*lint -emacro(524, MIN_CONN_INTERVAL) // Loss of precision */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(7.5, UNIT_1_25_MS) /**< Minimum connection interval (7.5 ms) */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(30, UNIT_1_25_MS) /**< Maximum connection interval (30 ms). */ #define SLAVE_LATENCY 6 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(430, UNIT_10_MS) /**< Connection supervisory timeout (430 ms). */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 0 /**< LE Secure Connections not enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define OUTPUT_REPORT_INDEX 0 /**< Index of Output Report. */ #define OUTPUT_REPORT_MAX_LEN 1 /**< Maximum length of Output Report. */ #define INPUT_REPORT_KEYS_INDEX 0 /**< Index of Input Report. */ #define INPUT_REP_REF_ID 1 // 0 /**< Id of reference to Keyboard Input Report. */ #define OUTPUT_REP_REF_ID 0 /**< Id of reference to Keyboard Output Report. */ #define FEATURE_REP_REF_ID 0 /**< ID of reference to Keyboard Feature Report. */ #define FEATURE_REPORT_MAX_LEN 2 /**< Maximum length of Feature Report. */ #define FEATURE_REPORT_INDEX 0 /**< Index of Feature Report. */ #define MAX_BUFFER_ENTRIES 5 /**< Number of elements that can be enqueued */ #define BASE_USB_HID_SPEC_VERSION 0x0101 /**< Version number of base USB HID Specification implemented by this application. */ #define INPUT_REPORT_KEYS_MAX_LEN 8 /**< Maximum length of the Input Report characteristic. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define SCHED_MAX_EVENT_DATA_SIZE APP_TIMER_SCHED_EVENT_DATA_SIZE /**< Maximum size of scheduler events. */ #ifdef SVCALL_AS_NORMAL_FUNCTION #define SCHED_QUEUE_SIZE 20 /**< Maximum number of events in the scheduler queue. More is needed in case of Serialization. */ #else #define SCHED_QUEUE_SIZE 10 /**< Maximum number of events in the scheduler queue. */ #endif #define MODIFIER_KEY_POS 0 /**< Position of the modifier byte in the Input Report. */ #define SCAN_CODE_POS 2 /**< The start position of the key scan code in a HID Report. */ #define SHIFT_KEY_CODE 0x02 /**< Key code indicating the press of the Shift Key. */ #define MAX_KEYS_IN_ONE_REPORT (INPUT_REPORT_KEYS_MAX_LEN - SCAN_CODE_POS)/**< Maximum number of key presses that can be sent in one Input Report. */ #define INPUT_CCONTROL_KEYS_INDEX 1 //#define INPUT_CC_ 2 #define INPUT_REPORT_KEYS_MAX_LEN 8 /**< Maximum length of the Input Report characteristic. */ #define INPUT_CC_REPORT_KEYS_MAX_LEN 1 #define INPUT_CC_REP_REF_ID 0 #define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(100) #define KEY_PRESS_BUTTON_PIN_NO BSP_BUTTON_3 /**< Button used for sending keyboard text. */ #define VOLDOWN_BUTTON BSP_BUTTON_2 #define VOLUP_BUTTON BSP_BUTTON_1 typedef enum { RELEASE_KEY = 0x00, CONSUMER_CTRL_PLAY = 0x01, CONSUMER_CTRL_ALCCC = 0x02, CONSUMER_CTRL_SCAN_NEXT_TRACK = 0x04, CONSUMER_CTRL_SCAN_PREV_TRACK = 0x08, CONSUMER_CTRL_VOL_DW = 0x10, CONSUMER_CTRL_VOL_UP = 0x20, CONSUMER_CTRL_AC_FORWARD = 0x40, CONSUMER_CTRL_AC_BACK = 0x80, } consumer_control_t; /**Buffer queue access macros * * @{ */ /** Initialization of buffer list */ #define BUFFER_LIST_INIT() \ do \ { \ buffer_list.rp = 0; \ buffer_list.wp = 0; \ buffer_list.count = 0; \ } while (0) /** Provide status of data list is full or not */ #define BUFFER_LIST_FULL() \ ((MAX_BUFFER_ENTRIES == buffer_list.count - 1) ? true : false) /** Provides status of buffer list is empty or not */ #define BUFFER_LIST_EMPTY() \ ((0 == buffer_list.count) ? true : false) #define BUFFER_ELEMENT_INIT(i) \ do \ { \ buffer_list.buffer[(i)].p_data = NULL; \ } while (0) /** @} */ /** Abstracts buffer element */ typedef struct hid_key_buffer { uint8_t data_offset; /**< Max Data that can be buffered for all entries */ uint8_t data_len; /**< Total length of data */ uint8_t * p_data; /**< Scanned key pattern */ ble_hids_t * p_instance; /**< Identifies peer and service instance */ } buffer_entry_t; STATIC_ASSERT(sizeof(buffer_entry_t) % 4 == 0); /** Circular buffer list */ typedef struct { buffer_entry_t buffer[MAX_BUFFER_ENTRIES]; /**< Maximum number of entries that can enqueued in the list */ uint8_t rp; /**< Index to the read location */ uint8_t wp; /**< Index to write location */ uint8_t count; /**< Number of elements in the list */ } buffer_list_t; STATIC_ASSERT(sizeof(buffer_list_t) % 4 == 0); APP_TIMER_DEF(m_battery_timer_id); /**< Battery timer. */ BLE_HIDS_DEF(m_hids, /**< Structure used to identify the HID service. */ NRF_SDH_BLE_TOTAL_LINK_COUNT, INPUT_REPORT_KEYS_MAX_LEN, OUTPUT_REPORT_MAX_LEN, FEATURE_REPORT_MAX_LEN); BLE_BAS_DEF(m_bas); /**< Structure used to identify the battery service. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ static bool m_in_boot_mode = false; /**< Current protocol mode. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static sensorsim_cfg_t m_battery_sim_cfg; /**< Battery Level sensor simulator configuration. */ static sensorsim_state_t m_battery_sim_state; /**< Battery Level sensor simulator state. */ static bool m_caps_on = false; /**< Variable to indicate if Caps Lock is turned on. */ static pm_peer_id_t m_peer_id; /**< Device reference handle to the current bonded central. */ static uint32_t m_whitelist_peer_cnt; /**< Number of peers currently in the whitelist. */ static pm_peer_id_t m_whitelist_peers[BLE_GAP_WHITELIST_ADDR_MAX_COUNT]; /**< List of peers currently in the whitelist. */ static buffer_list_t buffer_list; /**< List to enqueue not just data to be sent, but also related information like the handle, connection handle etc */ static ble_uuid_t m_adv_uuids[] = {{BLE_UUID_HUMAN_INTERFACE_DEVICE_SERVICE, BLE_UUID_TYPE_BLE}}; static void on_hids_evt(ble_hids_t * p_hids, ble_hids_evt_t * p_evt); /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for setting filtered whitelist. * * @param[in] skip Filter passed to @ref pm_peer_id_list. */ static void whitelist_set(pm_peer_id_list_skip_t skip) { pm_peer_id_t peer_ids[BLE_GAP_WHITELIST_ADDR_MAX_COUNT]; uint32_t peer_id_count = BLE_GAP_WHITELIST_ADDR_MAX_COUNT; ret_code_t err_code = pm_peer_id_list(peer_ids, &peer_id_count, PM_PEER_ID_INVALID, skip); APP_ERROR_CHECK(err_code); NRF_LOG_INFO("\tm_whitelist_peer_cnt %d, MAX_PEERS_WLIST %d", peer_id_count + 1, BLE_GAP_WHITELIST_ADDR_MAX_COUNT); err_code = pm_whitelist_set(peer_ids, peer_id_count); APP_ERROR_CHECK(err_code); } /**@brief Function for setting filtered device identities. * * @param[in] skip Filter passed to @ref pm_peer_id_list. */ static void identities_set(pm_peer_id_list_skip_t skip) { pm_peer_id_t peer_ids[BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT]; uint32_t peer_id_count = BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT; ret_code_t err_code = pm_peer_id_list(peer_ids, &peer_id_count, PM_PEER_ID_INVALID, skip); APP_ERROR_CHECK(err_code); err_code = pm_device_identities_list_set(peer_ids, peer_id_count); APP_ERROR_CHECK(err_code); } /**@brief Clear bond information from persistent storage. */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for starting advertising. */ static void advertising_start(bool erase_bonds) { if (erase_bonds == true) { delete_bonds(); // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event. } else { whitelist_set(PM_PEER_ID_LIST_SKIP_NO_ID_ADDR); ret_code_t ret = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(ret); } } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void pm_evt_handler(pm_evt_t const * p_evt) { pm_handler_on_pm_evt(p_evt); pm_handler_flash_clean(p_evt); switch (p_evt->evt_id) { case PM_EVT_PEERS_DELETE_SUCCEEDED: advertising_start(false); break; case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED: if ( p_evt->params.peer_data_update_succeeded.flash_changed && (p_evt->params.peer_data_update_succeeded.data_id == PM_PEER_DATA_ID_BONDING)) { NRF_LOG_INFO("New Bond, add the peer to the whitelist if possible"); // Note: You should check on what kind of white list policy your application should use. whitelist_set(PM_PEER_ID_LIST_SKIP_NO_ID_ADDR); } break; default: break; } } /**@brief Function for handling Service errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void service_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling advertising errors. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void ble_advertising_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for performing a battery measurement, and update the Battery Level characteristic in the Battery Service. */ static void battery_level_update(void) { ret_code_t err_code; uint8_t battery_level; battery_level = (uint8_t)sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg); err_code = ble_bas_battery_level_update(&m_bas, battery_level, BLE_CONN_HANDLE_ALL); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_FORBIDDEN) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } } /**@brief Function for handling the Battery measurement timer timeout. * * @details This function will be called each time the battery level measurement timer expires. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void battery_level_meas_timeout_handler(void * p_context) { UNUSED_PARAMETER(p_context); battery_level_update(); } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. */ static void timers_init(void) { ret_code_t err_code; err_code = app_timer_init(); APP_ERROR_CHECK(err_code); // Create battery timer. err_code = app_timer_create(&m_battery_timer_id, APP_TIMER_MODE_REPEATED, battery_level_meas_timeout_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the * device including the device name, appearance, and the preferred connection parameters. */ static void gap_params_init(void) { ret_code_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_HID_KEYBOARD); // err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_GENERIC_REMOTE_CONTROL); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the GATT module. */ static void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Queued Write Module. */ static void qwr_init(void) { ret_code_t err_code; nrf_ble_qwr_init_t qwr_init_obj = {0}; qwr_init_obj.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init_obj); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing Device Information Service. */ static void dis_init(void) { ret_code_t err_code; ble_dis_init_t dis_init_obj; ble_dis_pnp_id_t pnp_id; pnp_id.vendor_id_source = PNP_ID_VENDOR_ID_SOURCE; pnp_id.vendor_id = PNP_ID_VENDOR_ID; pnp_id.product_id = PNP_ID_PRODUCT_ID; pnp_id.product_version = PNP_ID_PRODUCT_VERSION; memset(&dis_init_obj, 0, sizeof(dis_init_obj)); ble_srv_ascii_to_utf8(&dis_init_obj.manufact_name_str, MANUFACTURER_NAME); dis_init_obj.p_pnp_id = &pnp_id; dis_init_obj.dis_char_rd_sec = SEC_JUST_WORKS; err_code = ble_dis_init(&dis_init_obj); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing Battery Service. */ static void bas_init(void) { ret_code_t err_code; ble_bas_init_t bas_init_obj; memset(&bas_init_obj, 0, sizeof(bas_init_obj)); bas_init_obj.evt_handler = NULL; bas_init_obj.support_notification = true; bas_init_obj.p_report_ref = NULL; bas_init_obj.initial_batt_level = 100; bas_init_obj.bl_rd_sec = SEC_JUST_WORKS; bas_init_obj.bl_cccd_wr_sec = SEC_JUST_WORKS; bas_init_obj.bl_report_rd_sec = SEC_JUST_WORKS; err_code = ble_bas_init(&m_bas, &bas_init_obj); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing HID Service. */ static void hids_init(void) { ret_code_t err_code; ble_hids_init_t hids_init_obj; static ble_hids_inp_rep_init_t input_report_array[2]; ble_hids_inp_rep_init_t * p_input_report; static ble_hids_outp_rep_init_t output_report_array[1]; ble_hids_outp_rep_init_t * p_output_report; ble_hids_feature_rep_init_t * p_feature_report; uint8_t hid_info_flags; static ble_hids_feature_rep_init_t feature_report_array[1]; static uint8_t report_map_data[] = { 0x05, 0x01, // Usage Page (Generic Desktop) 0x09, 0x06, // Usage (Keyboard) 0xA1, 0x01, // Collection (Application) 0x05, 0x07, // Usage Page (Key Codes) 0x19, 0xe0, // Usage Minimum (224) 0x29, 0xe7, // Usage Maximum (231) 0x15, 0x00, // Logical Minimum (0) 0x25, 0x01, // Logical Maximum (1) 0x75, 0x01, // Report Size (1) 0x95, 0x08, // Report Count (8) 0x81, 0x02, // Input (Data, Variable, Absolute) 0x95, 0x01, // Report Count (1) 0x75, 0x08, // Report Size (8) 0x81, 0x01, // Input (Constant) reserved byte(1) 0x95, 0x05, // Report Count (5) 0x75, 0x01, // Report Size (1) 0x05, 0x08, // Usage Page (Page# for LEDs) 0x19, 0x01, // Usage Minimum (1) 0x29, 0x05, // Usage Maximum (5) 0x91, 0x02, // Output (Data, Variable, Absolute), Led report 0x95, 0x01, // Report Count (1) 0x75, 0x03, // Report Size (3) 0x91, 0x01, // Output (Data, Variable, Absolute), Led report padding 0x95, 0x06, // Report Count (6) 0x75, 0x08, // Report Size (8) 0x15, 0x00, // Logical Minimum (0) 0x25, 0x65, // Logical Maximum (101) 0x05, 0x07, // Usage Page (Key codes) 0x19, 0x00, // Usage Minimum (0) 0x29, 0x65, // Usage Maximum (101) 0x81, 0x00, // Input (Data, Array) Key array(6 bytes) 0x09, 0x05, // Usage (Vendor Defined) 0x15, 0x00, // Logical Minimum (0) 0x26, 0xFF, 0x00, // Logical Maximum (255) 0x75, 0x08, // Report Size (8 bit) 0x95, 0x02, // Report Count (2) 0xB1, 0x02, // Feature (Data, Variable, Absolute) 0xC0, // End Collection (Application) // Report ID 2: Advanced buttons 0x05, 0x0C, // Usage Page (Consumer) 0x09, 0x01, // Usage (Consumer Control) 0xA1, 0x01, // Collection (Application) 0x85, 0x02, // Report Id (2) 0x15, 0x00, // Logical minimum (0) 0x25, 0x01, // Logical maximum (1) 0x75, 0x01, // Report Size (1) 0x95, 0x01, // Report Count (1) 0x09, 0xCD, // Usage (Play/Pause) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0x0A, 0x83, 0x01, // Usage (AL Consumer Control Configuration) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0x09, 0xB5, // Usage (Scan Next Track) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0x09, 0xB6, // Usage (Scan Previous Track) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0x09, 0xEA, // Usage (Volume Down) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0x09, 0xE9, // Usage (Volume Up) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0x0A, 0x25, 0x02, // Usage (AC Forward) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0x0A, 0x24, 0x02, // Usage (AC Back) 0x81, 0x02, // Input (Data,Value,Relative,Bit Field) 0xC0 // End Collection }; memset((void *)input_report_array, 0, sizeof(ble_hids_inp_rep_init_t)); memset((void *)output_report_array, 0, sizeof(ble_hids_outp_rep_init_t)); memset((void *)feature_report_array, 0, sizeof(ble_hids_feature_rep_init_t)); // Initialize HID Service p_input_report = &input_report_array[INPUT_REPORT_KEYS_INDEX]; p_input_report->max_len = INPUT_REPORT_KEYS_MAX_LEN; p_input_report->rep_ref.report_id = INPUT_REP_REF_ID; p_input_report->rep_ref.report_type = BLE_HIDS_REP_TYPE_INPUT; p_input_report->sec.cccd_wr = SEC_JUST_WORKS; p_input_report->sec.wr = SEC_JUST_WORKS; p_input_report->sec.rd = SEC_JUST_WORKS; p_output_report = &output_report_array[OUTPUT_REPORT_INDEX]; p_output_report->max_len = OUTPUT_REPORT_MAX_LEN; p_output_report->rep_ref.report_id = OUTPUT_REP_REF_ID; p_output_report->rep_ref.report_type = BLE_HIDS_REP_TYPE_OUTPUT; // Initialize HID Service - ConsumerControl p_input_report = &input_report_array[INPUT_CCONTROL_KEYS_INDEX]; p_input_report->max_len = INPUT_CC_REPORT_KEYS_MAX_LEN; p_input_report->rep_ref.report_id = INPUT_CC_REP_REF_ID; p_input_report->rep_ref.report_type = BLE_HIDS_REP_TYPE_INPUT; p_input_report->sec.cccd_wr = SEC_JUST_WORKS; p_output_report->sec.wr = SEC_JUST_WORKS; p_output_report->sec.rd = SEC_JUST_WORKS; p_feature_report = &feature_report_array[FEATURE_REPORT_INDEX]; p_feature_report->max_len = FEATURE_REPORT_MAX_LEN; p_feature_report->rep_ref.report_id = FEATURE_REP_REF_ID; p_feature_report->rep_ref.report_type = BLE_HIDS_REP_TYPE_FEATURE; p_feature_report->sec.rd = SEC_JUST_WORKS; p_feature_report->sec.wr = SEC_JUST_WORKS; hid_info_flags = HID_INFO_FLAG_REMOTE_WAKE_MSK | HID_INFO_FLAG_NORMALLY_CONNECTABLE_MSK; memset(&hids_init_obj, 0, sizeof(hids_init_obj)); hids_init_obj.evt_handler = on_hids_evt; hids_init_obj.error_handler = service_error_handler; hids_init_obj.is_kb = true; hids_init_obj.is_mouse = false; hids_init_obj.inp_rep_count = 2;//1; hids_init_obj.p_inp_rep_array = input_report_array; hids_init_obj.outp_rep_count = 1; hids_init_obj.p_outp_rep_array = output_report_array; hids_init_obj.feature_rep_count = 0; hids_init_obj.p_feature_rep_array = feature_report_array; hids_init_obj.rep_map.data_len = sizeof(report_map_data); hids_init_obj.rep_map.p_data = report_map_data; hids_init_obj.hid_information.bcd_hid = BASE_USB_HID_SPEC_VERSION; hids_init_obj.hid_information.b_country_code = 0; hids_init_obj.hid_information.flags = hid_info_flags; hids_init_obj.included_services_count = 0; hids_init_obj.p_included_services_array = NULL; hids_init_obj.rep_map.rd_sec = SEC_OPEN; hids_init_obj.protocol_mode_wr_sec = SEC_OPEN; hids_init_obj.hid_information.rd_sec = SEC_OPEN; hids_init_obj.boot_kb_inp_rep_sec.cccd_wr = SEC_OPEN; hids_init_obj.boot_kb_inp_rep_sec.rd = SEC_OPEN; hids_init_obj.boot_kb_outp_rep_sec.rd = SEC_OPEN; hids_init_obj.boot_kb_outp_rep_sec.wr = SEC_OPEN; hids_init_obj.protocol_mode_rd_sec = SEC_OPEN; hids_init_obj.protocol_mode_wr_sec = SEC_OPEN; hids_init_obj.ctrl_point_wr_sec = SEC_OPEN; err_code = ble_hids_init(&m_hids, &hids_init_obj); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { qwr_init(); dis_init(); bas_init(); hids_init(); } /**@brief Function for initializing the battery sensor simulator. */ static void sensor_simulator_init(void) { m_battery_sim_cfg.min = MIN_BATTERY_LEVEL; m_battery_sim_cfg.max = MAX_BATTERY_LEVEL; m_battery_sim_cfg.incr = BATTERY_LEVEL_INCREMENT; m_battery_sim_cfg.start_at_max = true; sensorsim_init(&m_battery_sim_state, &m_battery_sim_cfg); } /**@brief Function for handling a Connection Parameters error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { ret_code_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = NULL; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for starting timers. */ static void timers_start(void) { ret_code_t err_code; err_code = app_timer_start(m_battery_timer_id, BATTERY_LEVEL_MEAS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for transmitting a key scan Press & Release Notification. * * @warning This handler is an example only. You need to analyze how you wish to send the key * release. * * @param[in] p_instance Identifies the service for which Key Notifications are requested. * @param[in] p_key_pattern Pointer to key pattern. * @param[in] pattern_len Length of key pattern. 0 < pattern_len < 7. * @param[in] pattern_offset Offset applied to Key Pattern for transmission. * @param[out] actual_len Provides actual length of Key Pattern transmitted, making buffering of * rest possible if needed. * @return NRF_SUCCESS on success, NRF_ERROR_RESOURCES in case transmission could not be * completed due to lack of transmission buffer or other error codes indicating reason * for failure. * * @note In case of NRF_ERROR_RESOURCES, remaining pattern that could not be transmitted * can be enqueued \ref buffer_enqueue function. * In case a pattern of 'cofFEe' is the p_key_pattern, with pattern_len as 6 and * pattern_offset as 0, the notifications as observed on the peer side would be * 1> 'c', 'o', 'f', 'F', 'E', 'e' * 2> - , 'o', 'f', 'F', 'E', 'e' * 3> - , -, 'f', 'F', 'E', 'e' * 4> - , -, -, 'F', 'E', 'e' * 5> - , -, -, -, 'E', 'e' * 6> - , -, -, -, -, 'e' * 7> - , -, -, -, -, - * Here, '-' refers to release, 'c' refers to the key character being transmitted. * Therefore 7 notifications will be sent. * In case an offset of 4 was provided, the pattern notifications sent will be from 5-7 * will be transmitted. */ static uint32_t send_key_scan_press_release(ble_hids_t * p_hids, uint8_t * p_key_pattern, uint16_t pattern_len, uint16_t pattern_offset, uint16_t * p_actual_len) { ret_code_t err_code; uint16_t offset; uint16_t data_len; uint8_t data[INPUT_REPORT_KEYS_MAX_LEN]; // HID Report Descriptor enumerates an array of size 6, the pattern hence shall not be any // longer than this. STATIC_ASSERT((INPUT_REPORT_KEYS_MAX_LEN - 2) == 6); ASSERT(pattern_len <= (INPUT_REPORT_KEYS_MAX_LEN - 2)); offset = pattern_offset; data_len = pattern_len; do { // Reset the data buffer. memset(data, 0, sizeof(data)); // Copy the scan code. memcpy(data + SCAN_CODE_POS + offset, p_key_pattern + offset, data_len - offset); if (!m_in_boot_mode) { err_code = ble_hids_inp_rep_send(p_hids, INPUT_REPORT_KEYS_INDEX, INPUT_REPORT_KEYS_MAX_LEN, data, m_conn_handle); } else { err_code = ble_hids_boot_kb_inp_rep_send(p_hids, INPUT_REPORT_KEYS_MAX_LEN, data, m_conn_handle); } if (err_code != NRF_SUCCESS) { break; } offset++; } while (offset <= data_len); *p_actual_len = offset; return err_code; } /**@brief Function for enqueuing key scan patterns that could not be transmitted either completely * or partially. * * @warning This handler is an example only. You need to analyze how you wish to send the key * release. * * @param[in] p_hids Identifies the service for which Key Notifications are buffered. * @param[in] p_key_pattern Pointer to key pattern. * @param[in] pattern_len Length of key pattern. * @param[in] offset Offset applied to Key Pattern when requesting a transmission on * dequeue, @ref buffer_dequeue. * @return NRF_SUCCESS on success, else an error code indicating reason for failure. */ static uint32_t buffer_enqueue(ble_hids_t * p_hids, uint8_t * p_key_pattern, uint16_t pattern_len, uint16_t offset) { buffer_entry_t * element; uint32_t err_code = NRF_SUCCESS; if (BUFFER_LIST_FULL()) { // Element cannot be buffered. err_code = NRF_ERROR_NO_MEM; } else { // Make entry of buffer element and copy data. element = &buffer_list.buffer[(buffer_list.wp)]; element->p_instance = p_hids; element->p_data = p_key_pattern; element->data_offset = offset; element->data_len = pattern_len; buffer_list.count++; buffer_list.wp++; if (buffer_list.wp == MAX_BUFFER_ENTRIES) { buffer_list.wp = 0; } } return err_code; } /**@brief Function for sending sample key presses to the peer. * * @param[in] key_pattern_len Pattern length. * @param[in] p_key_pattern Pattern to be sent. */ static void keys_send(uint8_t key_pattern_len, uint8_t * p_key_pattern) { ret_code_t err_code; uint16_t actual_len; err_code = send_key_scan_press_release(&m_hids, p_key_pattern, key_pattern_len, 0, &actual_len); // An additional notification is needed for release of all keys, therefore check // is for actual_len <= key_pattern_len and not actual_len < key_pattern_len. if ((err_code == NRF_ERROR_RESOURCES) && (actual_len <= key_pattern_len)) { // Buffer enqueue routine return value is not intentionally checked. // Rationale: Its better to have a a few keys missing than have a system // reset. Recommendation is to work out most optimal value for // MAX_BUFFER_ENTRIES to minimize chances of buffer queue full condition UNUSED_VARIABLE(buffer_enqueue(&m_hids, p_key_pattern, key_pattern_len, actual_len)); } if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_BUSY) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } } /**@brief Function for handling the HID Report Characteristic Write event. * * @param[in] p_evt HID service event. */ static void on_hid_rep_char_write(ble_hids_evt_t * p_evt) { if (p_evt->params.char_write.char_id.rep_type == BLE_HIDS_REP_TYPE_OUTPUT) { ret_code_t err_code; uint8_t report_val; uint8_t report_index = p_evt->params.char_write.char_id.rep_index; if (report_index == OUTPUT_REPORT_INDEX) { // This code assumes that the output report is one byte long. Hence the following // static assert is made. STATIC_ASSERT(OUTPUT_REPORT_MAX_LEN == 1); err_code = ble_hids_outp_rep_get(&m_hids, report_index, OUTPUT_REPORT_MAX_LEN, 0, m_conn_handle, &report_val); APP_ERROR_CHECK(err_code); } } } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { ret_code_t err_code; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling HID events. * * @details This function will be called for all HID events which are passed to the application. * * @param[in] p_hids HID service structure. * @param[in] p_evt Event received from the HID service. */ static void on_hids_evt(ble_hids_t * p_hids, ble_hids_evt_t * p_evt) { switch (p_evt->evt_type) { case BLE_HIDS_EVT_BOOT_MODE_ENTERED: m_in_boot_mode = true; break; case BLE_HIDS_EVT_REPORT_MODE_ENTERED: m_in_boot_mode = false; break; case BLE_HIDS_EVT_REP_CHAR_WRITE: on_hid_rep_char_write(p_evt); break; case BLE_HIDS_EVT_NOTIF_ENABLED: break; default: // No implementation needed. break; } } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { ret_code_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_DIRECTED_HIGH_DUTY: NRF_LOG_INFO("High Duty Directed advertising."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_DIRECTED); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_DIRECTED: NRF_LOG_INFO("Directed advertising."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_DIRECTED); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_FAST: NRF_LOG_INFO("Fast advertising."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_SLOW: NRF_LOG_INFO("Slow advertising."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_SLOW); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_FAST_WHITELIST: NRF_LOG_INFO("Fast advertising with whitelist."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_SLOW_WHITELIST: NRF_LOG_INFO("Slow advertising with whitelist."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; case BLE_ADV_EVT_WHITELIST_REQUEST: { ble_gap_addr_t whitelist_addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT]; ble_gap_irk_t whitelist_irks[BLE_GAP_WHITELIST_ADDR_MAX_COUNT]; uint32_t addr_cnt = BLE_GAP_WHITELIST_ADDR_MAX_COUNT; uint32_t irk_cnt = BLE_GAP_WHITELIST_ADDR_MAX_COUNT; err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt, whitelist_irks, &irk_cnt); APP_ERROR_CHECK(err_code); NRF_LOG_DEBUG("pm_whitelist_get returns %d addr in whitelist and %d irk whitelist", addr_cnt, irk_cnt); // Set the correct identities list (no excluding peers with no Central Address Resolution). identities_set(PM_PEER_ID_LIST_SKIP_NO_IRK); // Apply the whitelist. err_code = ble_advertising_whitelist_reply(&m_advertising, whitelist_addrs, addr_cnt, whitelist_irks, irk_cnt); APP_ERROR_CHECK(err_code); } break; //BLE_ADV_EVT_WHITELIST_REQUEST case BLE_ADV_EVT_PEER_ADDR_REQUEST: { pm_peer_data_bonding_t peer_bonding_data; // Only Give peer address if we have a handle to the bonded peer. if (m_peer_id != PM_PEER_ID_INVALID) { err_code = pm_peer_data_bonding_load(m_peer_id, &peer_bonding_data); if (err_code != NRF_ERROR_NOT_FOUND) { APP_ERROR_CHECK(err_code); // Manipulate identities to exclude peers with no Central Address Resolution. identities_set(PM_PEER_ID_LIST_SKIP_ALL); ble_gap_addr_t * p_peer_addr = &(peer_bonding_data.peer_ble_id.id_addr_info); err_code = ble_advertising_peer_addr_reply(&m_advertising, p_peer_addr); APP_ERROR_CHECK(err_code); } } } break; //BLE_ADV_EVT_PEER_ADDR_REQUEST default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); // Dequeue all keys without transmission. //(void) buffer_dequeue(false); m_conn_handle = BLE_CONN_HANDLE_INVALID; // Reset m_caps_on variable. Upon reconnect, the HID host will re-send the Output // report containing the Caps lock state. m_caps_on = false; // disabling alert 3. signal - used for capslock ON err_code = bsp_indication_set(BSP_INDICATE_ALERT_OFF); APP_ERROR_CHECK(err_code); break; // BLE_GAP_EVT_DISCONNECTED case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTS_EVT_HVN_TX_COMPLETE: // Send next key event // (void) buffer_dequeue(true); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for the Event Scheduler initialization. */ static void scheduler_init(void) { APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE); } /**@brief Function for the Peer Manager initialization. */ static void peer_manager_init(void) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; uint8_t adv_flags; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); adv_flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = true; init.advdata.flags = adv_flags; init.advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.advdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_whitelist_enabled = true; init.config.ble_adv_directed_high_duty_enabled = true; init.config.ble_adv_directed_enabled = false; init.config.ble_adv_directed_interval = 0; init.config.ble_adv_directed_timeout = 0; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_FAST_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_FAST_DURATION; init.config.ble_adv_slow_enabled = true; init.config.ble_adv_slow_interval = APP_ADV_SLOW_INTERVAL; init.config.ble_adv_slow_timeout = APP_ADV_SLOW_DURATION; init.evt_handler = on_adv_evt; init.error_handler = ble_advertising_error_handler; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { app_sched_execute(); if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for sending consumer control data */ static uint32_t consumer_control_send(consumer_control_t cmd) { // ret_code_t err_code; NRF_LOG_INFO("Called Cons Cont Send"); //debug code return ble_hids_inp_rep_send(&m_hids, INPUT_CCONTROL_KEYS_INDEX, INPUT_CC_REPORT_KEYS_MAX_LEN, (uint8_t*)&cmd, m_conn_handle); } static uint32_t hid_kbd_send_string(void) { // uint8_t temp_buf[INPUT_REPORT_KEYS_MAX_LEN] = {0x00, 0x00, 0xb, 0xc, 0x2c, 0x0, 0x0, 0x0}; uint8_t temp_buf[INPUT_REPORT_KEYS_MAX_LEN] = {0x00, 0x00, 0xEA, 0x00, 0x00, 0x00, 0x00, 0x00}; return ble_hids_inp_rep_send(&m_hids, INPUT_REPORT_KEYS_INDEX, INPUT_REPORT_KEYS_MAX_LEN, (uint8_t*)temp_buf, m_conn_handle); } uint32_t hid_kbd_send_release(void) { NRF_LOG_INFO("Called Kbd Release"); //debug code uint8_t temp_buf[INPUT_REPORT_KEYS_MAX_LEN] = {0, 0, 0, 0, 0, 0, 0, 0}; return ble_hids_inp_rep_send(&m_hids, INPUT_REPORT_KEYS_INDEX, INPUT_REPORT_KEYS_MAX_LEN, (uint8_t*)temp_buf, m_conn_handle); } void bsp_event_handler(bsp_event_t evt) { uint32_t err_code; err_code = bsp_event_to_button_action_assign(0, BSP_BUTTON_ACTION_RELEASE, BSP_EVENT_KEY_0_RELEASE); APP_ERROR_CHECK(err_code); switch (evt) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); NRF_LOG_INFO("testPress-UsrTerm") //debug code if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; case BSP_EVENT_KEY_0: //On Button 1 press NRF_LOG_INFO("testPress") //debug code LEDS_INVERT(BSP_LED_0_MASK); //Changes the current state of LED_1 consumer_control_send(CONSUMER_CTRL_VOL_DW); // hid_kbd_send_string(); //uncomment to send via hid_kbd_send_string f'n break; case BSP_EVENT_KEY_0_RELEASE: NRF_LOG_INFO("testRelease") //debug code // consumer_control_send(RELEASE_KEY); hid_kbd_send_release(); LEDS_INVERT(BSP_LED_0_MASK); break; case BSP_EVENT_KEY_1: //On Button 2 press LEDS_INVERT(BSP_LED_1_MASK); //Changes the current state of LED_2 break; case BSP_EVENT_KEY_2: //On Button 3 press LEDS_INVERT(BSP_LED_2_MASK); //Changes the current state of LED_3 break; case BSP_EVENT_KEY_3: //On Button 4 press LEDS_INVERT(BSP_LED_3_MASK); //Changes the current state of LED_4 break; default: return; // no implementation needed uint32_t err_code = NRF_SUCCESS; APP_ERROR_CHECK(err_code); } } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { ret_code_t err_code; bsp_event_t startup_event; err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for application main entry. */ int main(void) { bool erase_bonds; // Initialize. log_init(); timers_init(); buttons_leds_init(&erase_bonds); power_management_init(); ble_stack_init(); scheduler_init(); gap_params_init(); gatt_init(); advertising_init(); services_init(); sensor_simulator_init(); conn_params_init(); peer_manager_init(); // Start execution. NRF_LOG_INFO("Volume Demo started."); timers_start(); advertising_start(erase_bonds); // Enter main loop. for (;;) { idle_state_handle(); } } /** * @} */