This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

multiple adc +multiple pwm

Hi, i am using nrf52840 development kit , four servo motor . using 15.2 sdk version

here i am controlling the angle using adc values , i am done with one servo motor . pwm+adc. Now i need to control the angle for all the four motors , how to do that ? how can  i add the four adc channels . 

Parents
  • In order to add an ADC channel, you only need to change the pin, and change the channel number:

    void saadc_init(void)
    {
        ret_code_t err_code;
        nrf_saadc_channel_config_t channel_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);
    
        err_code = nrf_drv_saadc_init(NULL, saadc_callback);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(0, &channel_config);
        APP_ERROR_CHECK(err_code);
        
        channel_config.pin_p = NRF_SAADC_INPUT_AIN1;
        err_code = nrf_drv_saadc_channel_init(1, &channel_config);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0], SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1], SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);
    
    }

    Then I recommend setting the "SAMPLES_IN_BUFFER" = n*number of channels, where n=1,2,3,4,...

    If you do this to the saadc example from the SDK, you will get 2 channels in the ADC. Just keep adding these until you have 4.

    It is quite similar to the PWM. I don't know if you used the pwm_library or the pwm_driver example/libraries, but it should be possible to add channels in either one of them. In the PWM_library, you may need to add a second instance of PWM in order to control 4 channels.

    BR,

    Edvin

  • what about the timer ? static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(0); , i need to change?

  • while running i am getting this in debug terminal ,

    but i couldn't able to connect to the device , i switched to timer 3 for adc and timer 1 for one pwm . It is advertising continuously even i can't able to connect 

    here is my code

    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    #include "nrf_drv_usbd.h"
    #include "nrf_drv_clock.h"
    #include "nrf_gpio.h"
    #include "nrf_delay.h"
    #include "nrf_drv_power.h"
    
    #include "app_error.h"
    #include "app_util.h"
    #include "app_usbd_core.h"
    #include "app_usbd.h"
    #include "app_usbd_string_desc.h"
    #include "app_usbd_cdc_acm.h"
    #include "app_usbd_serial_num.h"
    
    #include "pca10056.h"
    #include "boards.h"
    
    #include "C:\nRF5_SDK_15.2.0_9412b96\nRF5_SDK_15.2.0_9412b96\components\libraries\pwm\app_pwm.h"
    #include "nrf_drv_saadc.h"
    #include "nrf_drv_ppi.h"
    #include "nrf_drv_timer.h"
    
    #define LED_BLE_NUS_CONN (BSP_BOARD_LED_0)
    #define LED_BLE_NUS_RX   (BSP_BOARD_LED_1)
    #define LED_CDC_ACM_CONN (BSP_BOARD_LED_2)
    #define LED_CDC_ACM_RX   (BSP_BOARD_LED_3)
    
    
    #define SAMPLES_IN_BUFFER 4
    volatile uint8_t state = 1;
    
    static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(3);
    //static nrf_saadc_value_t     m_buffer_pool[2][SAMPLES_IN_BUFFER];
    static nrf_saadc_value_t       m_buffer_pool[2][SAMPLES_IN_BUFFER];
    static nrf_ppi_channel_t     m_ppi_channel;
    static uint32_t              m_adc_evt_counter;
    #define LED_BLINK_INTERVAL 800
    
     uint16_t adc_value1,adc_value2,adc_value3,adc_value4,adc_value;
    
    
    APP_TIMER_DEF(m_blink_ble);
    APP_TIMER_DEF(m_blink_cdc);
    
    
    
    static volatile bool ready_flag; 
     uint16_t adc_value1,adc_value2,adc_value3,adc_value4,adc_value;
    APP_PWM_INSTANCE(PWM1,1);  // Create the instance "PWM1" using TIMER1.  Enable the TIMER1 
    
    //APP_PWM_INSTANCE(PWM2,2);  //  Create the instance "PWM2" using TIMER2. Enable the Timer2
    
    int val;
    
    /**
     * @brief App timer handler for blinking the LEDs.
     *
     * @param p_context LED to blink.
     */
    void blink_handler(void * p_context)
    {
        bsp_board_led_invert((uint32_t) p_context);
    }
    
    #define ENDLINE_STRING "\r\n"
    
    
    // USB DEFINES START
    static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
                                        app_usbd_cdc_acm_user_event_t event);
    
    #define CDC_ACM_COMM_INTERFACE  0
    #define CDC_ACM_COMM_EPIN       NRF_DRV_USBD_EPIN2
    
    #define CDC_ACM_DATA_INTERFACE  1
    #define CDC_ACM_DATA_EPIN       NRF_DRV_USBD_EPIN1
    #define CDC_ACM_DATA_EPOUT      NRF_DRV_USBD_EPOUT1
    
    static char m_cdc_data_array[BLE_NUS_MAX_DATA_LEN];
    
    /** @brief CDC_ACM class instance */
    APP_USBD_CDC_ACM_GLOBAL_DEF(m_app_cdc_acm,
                                cdc_acm_user_ev_handler,
                                CDC_ACM_COMM_INTERFACE,
                                CDC_ACM_DATA_INTERFACE,
                                CDC_ACM_COMM_EPIN,
                                CDC_ACM_DATA_EPIN,
                                CDC_ACM_DATA_EPOUT,
                                APP_USBD_CDC_COMM_PROTOCOL_AT_V250);
    
    // USB DEFINES END
    
    // BLE DEFINES START
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define APP_FEATURE_NOT_SUPPORTED       BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2        /**< Reply when unsupported features are requested. */
    
    #define DEVICE_NAME                     "Nordic_USBD_BLE_UART"                      /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    #define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms). Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms). Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds). Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating an event (connect or start of notification) to the first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump. Can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */
    
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
    uint8_t ble_val[];
    uint32_t i;
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    static char m_nus_data_array[BLE_NUS_MAX_DATA_LEN];
    
    // BLE DEFINES END
    
    /**
     * @brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyze
     *          how your product is supposed to react in case of an assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    /** @brief Function for initializing the timer module. */
    static void timers_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
        err_code = app_timer_create(&m_blink_ble, APP_TIMER_MODE_REPEATED, blink_handler);
        APP_ERROR_CHECK(err_code);
        err_code = app_timer_create(&m_blink_cdc, APP_TIMER_MODE_REPEATED, blink_handler);
        APP_ERROR_CHECK(err_code);
    }
    
    /**
     * @brief Function for the GAP initialization.
     *
     * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**
     * @brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function processes the data received from the Nordic UART BLE Service and sends
     *          it to the USBD CDC ACM module.
     *
     * @param[in] p_evt Nordic UART Service event.
     */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
        
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
            uint32_t err_code;
            
       
            NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
            NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
       
                for ( i = 0; i < p_evt->params.rx_data.length; i++)
                {
                     ble_val[i] = p_evt->params.rx_data.p_data[i];
                }
       /*    if(ble_val[0] == '1')
           {
                    nrf_gpio_pin_set(ARDUINO_8_PIN);
                    
            }
             if(ble_val[0] == '0')
           {
                    nrf_gpio_pin_clear(ARDUINO_8_PIN);
                    
            }*/
    
            if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
            {
                while (app_uart_put('\n') == NRF_ERROR_BUSY);
          
            }
        }
    
    }
    
    
    /** @brief Function for initializing services that will be used by the application. */
    static void services_init(void)
    {
        uint32_t       err_code;
        ble_nus_init_t nus_init;
    
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    /**
     * @brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /** @brief Function for initializing the Connection Parameters module. */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = true;
        cp_init.evt_handler                    = NULL;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**
     * @brief Function for putting the chip into sleep mode.
     *
     * @note This function does not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /** @brief Function for starting advertising. */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    /**
     * @brief Function for handling advertising events.
     *
     * @details This function is called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = app_timer_start(m_blink_ble,
                                           APP_TIMER_TICKS(LED_BLINK_INTERVAL),
                                           (void *) LED_BLE_NUS_CONN);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                NRF_LOG_INFO("Advertising timeout, restarting.")
                advertising_start();
                break;
            default:
                break;
        }
    }
    
    
    /**
     * @brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("BLE NUS connected");
                err_code = app_timer_stop(m_blink_ble);
                APP_ERROR_CHECK(err_code);
                bsp_board_led_on(LED_BLE_NUS_CONN);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("BLE NUS disconnected");
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported.
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
            {
                ble_gap_data_length_params_t dl_params;
    
                // Clearing the struct will effectively set members to @ref BLE_GAP_DATA_LENGTH_AUTO.
                memset(&dl_params, 0, sizeof(ble_gap_data_length_params_t));
                err_code = sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, &dl_params, NULL);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_EVT_USER_MEM_REQUEST:
                err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
            {
                ble_gatts_evt_rw_authorize_request_t  req;
                ble_gatts_rw_authorize_reply_params_t auth_reply;
    
                req = p_ble_evt->evt.gatts_evt.params.authorize_request;
    
                if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID)
                {
                    if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ)     ||
                        (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) ||
                        (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL))
                    {
                        if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
                        {
                            auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
                        }
                        else
                        {
                            auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ;
                        }
                        auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED;
                        err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle,
                                                                   &auth_reply);
                        APP_ERROR_CHECK(err_code);
                    }
                }
            } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**
     * @brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /** @brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /** @brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, 64);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**
     * @brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event)
    {
        uint32_t err_code;
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    /** @brief Function for initializing the Advertising functionality. */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /** @brief Function for initializing buttons and LEDs. */
    static void buttons_leds_init(void)
    {
        uint32_t err_code = bsp_init(BSP_INIT_LEDS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /** @brief Function for initializing the nrf_log module. */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /** @brief Function for placing the application in low power state while waiting for events. */
    static void power_manage(void)
    {
        uint32_t err_code = sd_app_evt_wait();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**
     * @brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    static void idle_state_handle(void)
    {
        UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
        power_manage();
    }
    
    
    // USB CODE START
    static bool m_usb_connected = false;
    
    
    /** @brief User event handler @ref app_usbd_cdc_acm_user_ev_handler_t */
    static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
                                        app_usbd_cdc_acm_user_event_t event)
    {
        app_usbd_cdc_acm_t const * p_cdc_acm = app_usbd_cdc_acm_class_get(p_inst);
    
        switch (event)
        {
            case APP_USBD_CDC_ACM_USER_EVT_PORT_OPEN:
            {
                /*Set up the first transfer*/
                ret_code_t ret = app_usbd_cdc_acm_read(&m_app_cdc_acm,
                                                       m_cdc_data_array,
                                                       1);
                UNUSED_VARIABLE(ret);
                ret = app_timer_stop(m_blink_cdc);
                APP_ERROR_CHECK(ret);
                bsp_board_led_on(LED_CDC_ACM_CONN);
                NRF_LOG_INFO("CDC ACM port opened");
                break;
            }
    
            case APP_USBD_CDC_ACM_USER_EVT_PORT_CLOSE:
                NRF_LOG_INFO("CDC ACM port closed");
                if (m_usb_connected)
                {
                    ret_code_t ret = app_timer_start(m_blink_cdc,
                                                     APP_TIMER_TICKS(LED_BLINK_INTERVAL),
                                                     (void *) LED_CDC_ACM_CONN);
                    APP_ERROR_CHECK(ret);
                }
                break;
    
            case APP_USBD_CDC_ACM_USER_EVT_TX_DONE:
                break;
    
            case APP_USBD_CDC_ACM_USER_EVT_RX_DONE:
            {
                ret_code_t ret;
                static uint8_t index = 0;
                index++;
    
                do
                {
                    if ((m_cdc_data_array[index - 1] == '\n') ||
                        (m_cdc_data_array[index - 1] == '\r') ||
                        (index >= (m_ble_nus_max_data_len)))
                    {
                        if (index > 1)
                        {
                            bsp_board_led_invert(LED_CDC_ACM_RX);
                            NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                            NRF_LOG_HEXDUMP_DEBUG(m_cdc_data_array, index);
    
                            do
                            {
                                uint16_t length = (uint16_t)index;
                                if (length + sizeof(ENDLINE_STRING) < BLE_NUS_MAX_DATA_LEN)
                                {
                                    memcpy(m_cdc_data_array + length, ENDLINE_STRING, sizeof(ENDLINE_STRING));
                                    length += sizeof(ENDLINE_STRING);
                                }
    
                                ret = ble_nus_data_send(&m_nus,
                                                        (uint8_t *) m_cdc_data_array,
                                                        &length,
                                                        m_conn_handle);
    
                                if (ret == NRF_ERROR_NOT_FOUND)
                                {
                                    NRF_LOG_INFO("BLE NUS unavailable, data received: %s", m_cdc_data_array);
                                    break;
                                }
    
                                if (ret == NRF_ERROR_RESOURCES)
                                {
                                    NRF_LOG_ERROR("BLE NUS Too many notifications queued.");
                                    break;
                                }
    
                                if ((ret != NRF_ERROR_INVALID_STATE) && (ret != NRF_ERROR_BUSY))
                                {
                                    APP_ERROR_CHECK(ret);
                                }
                            }
                            while (ret == NRF_ERROR_BUSY);
                        }
    
                        index = 0;
                    }
    
                    /*Get amount of data transferred*/
                    size_t size = app_usbd_cdc_acm_rx_size(p_cdc_acm);
                    NRF_LOG_DEBUG("RX: size: %lu char: %c", size, m_cdc_data_array[index - 1]);
    
                    /* Fetch data until internal buffer is empty */
                    ret = app_usbd_cdc_acm_read(&m_app_cdc_acm,
                                                &m_cdc_data_array[index],
                                                1);
                    if (ret == NRF_SUCCESS)
                    {
                        index++;
                    }
                }
                while (ret == NRF_SUCCESS);
    
                break;
            }
            default:
                break;
        }
    }
    
    static void usbd_user_ev_handler(app_usbd_event_type_t event)
    {
        switch (event)
        {
            case APP_USBD_EVT_DRV_SUSPEND:
                break;
    
            case APP_USBD_EVT_DRV_RESUME:
                break;
    
            case APP_USBD_EVT_STARTED:
                break;
    
            case APP_USBD_EVT_STOPPED:
                app_usbd_disable();
                break;
    
            case APP_USBD_EVT_POWER_DETECTED:
                NRF_LOG_INFO("USB power detected");
    
                if (!nrf_drv_usbd_is_enabled())
                {
                    app_usbd_enable();
                }
                break;
    
            case APP_USBD_EVT_POWER_REMOVED:
            {
                NRF_LOG_INFO("USB power removed");
                ret_code_t err_code = app_timer_stop(m_blink_cdc);
                APP_ERROR_CHECK(err_code);
                bsp_board_led_off(LED_CDC_ACM_CONN);
                m_usb_connected = false;
                app_usbd_stop();
            }
                break;
    
            case APP_USBD_EVT_POWER_READY:
            {
                NRF_LOG_INFO("USB ready");
                ret_code_t err_code = app_timer_start(m_blink_cdc,
                                                      APP_TIMER_TICKS(LED_BLINK_INTERVAL),
                                                      (void *) LED_CDC_ACM_CONN);
                APP_ERROR_CHECK(err_code);
                m_usb_connected = true;
                app_usbd_start();
            }
                break;
    
            default:
                break;
        }
    }
    
    // USB CODE END
    
    void pwm_ready_callback(uint32_t pwm_id)    // PWM callback function
    {
        ready_flag = true;
    }
    
    void timer_handler(nrf_timer_event_t event_type, void * p_context)
    {
    
    }
    
    
    void saadc_sampling_event_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_drv_ppi_init();
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
        timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
        err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
        APP_ERROR_CHECK(err_code);
    
        /* setup m_timer for compare event every 400ms */
        uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer, 400);
        nrf_drv_timer_extended_compare(&m_timer,
                                       NRF_TIMER_CC_CHANNEL0,
                                       ticks,
                                       NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK,
                                       false);
        nrf_drv_timer_enable(&m_timer);
    
        uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                    NRF_TIMER_CC_CHANNEL0);
        uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();
    
        /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
        err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
                                              timer_compare_event_addr,
                                              saadc_sample_task_addr);
        APP_ERROR_CHECK(err_code);
    }
    
    
    void saadc_sampling_event_enable(void)
    {
        ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
    
        APP_ERROR_CHECK(err_code);
    }
    
    
    void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
    {
        if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
        {
            
           
    		ret_code_t err_code;
            uint16_t adc_value1,adc_value2,adc_value3,adc_value4,adc_value;
           uint8_t value[SAMPLES_IN_BUFFER];
            uint8_t bytes_to_send;
         
            // set buffers
            err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
            APP_ERROR_CHECK(err_code);
    						
            // print samples on hardware UART and parse data for BLE transmission
            printf("ADC event number: %d\r\n",(int)m_adc_evt_counter);
            adc_value1= p_event->data.done.p_buffer[0];
            adc_value2= p_event->data.done.p_buffer[1];
            adc_value3= p_event->data.done.p_buffer[2];
            adc_value4= p_event->data.done.p_buffer[3];
            for (int i = 0; i < SAMPLES_IN_BUFFER; i++)
            {
                
                adc_value = p_event->data.done.p_buffer[i];
                value[i*2] = adc_value;
                value[(i*2)+1] = adc_value >> 8;
                 m_adc_evt_counter++;
               
            }
             printf("adc_value 1:%d \r\n", p_event->data.done.p_buffer[0]);
         printf("adc_value 2:%d \r\n", p_event->data.done.p_buffer[1]);
              printf("adc_value 3:%d\r\n", p_event->data.done.p_buffer[2]);
               printf("adc_value 4:%d\r\n", p_event->data.done.p_buffer[3]);  
                                    
      nrf_delay_ms(1000);
        }
        
    }
    
    
    void saadc_init(void)
    {
        ret_code_t err_code;
    	
        nrf_drv_saadc_config_t saadc_config = NRF_DRV_SAADC_DEFAULT_CONFIG;
        saadc_config.resolution = NRF_SAADC_RESOLUTION_12BIT;
    	
        nrf_saadc_channel_config_t channel_0_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);
        channel_0_config.gain = NRF_SAADC_GAIN1_4;
        channel_0_config.reference = NRF_SAADC_REFERENCE_VDD4;
    	
        nrf_saadc_channel_config_t channel_1_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN1);
        channel_1_config.gain = NRF_SAADC_GAIN1_4;
        channel_1_config.reference = NRF_SAADC_REFERENCE_VDD4;
    	
        nrf_saadc_channel_config_t channel_2_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN6);
        channel_2_config.gain = NRF_SAADC_GAIN1_4;
        channel_2_config.reference = NRF_SAADC_REFERENCE_VDD4;
    	
        nrf_saadc_channel_config_t channel_3_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN7);
        channel_3_config.gain = NRF_SAADC_GAIN1_4;
        channel_3_config.reference = NRF_SAADC_REFERENCE_VDD4;				
    	
        err_code = nrf_drv_saadc_init(&saadc_config, saadc_callback);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(0, &channel_0_config);
        APP_ERROR_CHECK(err_code);
        err_code = nrf_drv_saadc_channel_init(1, &channel_1_config);
        APP_ERROR_CHECK(err_code);
        err_code = nrf_drv_saadc_channel_init(2, &channel_2_config);
        APP_ERROR_CHECK(err_code);
        err_code = nrf_drv_saadc_channel_init(3, &channel_3_config);
        APP_ERROR_CHECK(err_code);	
    
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);   
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    
    /** @brief Application main function. */
    int main(void)
    {
        ret_code_t ret;
        ret_code_t err_code_p;
    
        static const app_usbd_config_t usbd_config = {
            .ev_state_proc = usbd_user_ev_handler
        };
        // Initialize.
          log_init();
        timers_init();
    
        buttons_leds_init();
    
        app_usbd_serial_num_generate();
    
        ret = nrf_drv_clock_init();
        APP_ERROR_CHECK(ret);
    
        NRF_LOG_INFO("USBD BLE UART example started.");
    
        ret = app_usbd_init(&usbd_config);
        APP_ERROR_CHECK(ret);
    
        app_usbd_class_inst_t const * class_cdc_acm = app_usbd_cdc_acm_class_inst_get(&m_app_cdc_acm);
        ret = app_usbd_class_append(class_cdc_acm);
        APP_ERROR_CHECK(ret);
    
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
       saadc_sampling_event_init();
        saadc_init();
        saadc_sampling_event_enable();
               
        // Start execution.
        advertising_start();
    
        ret = app_usbd_power_events_enable();
        APP_ERROR_CHECK(ret);
    
      
               
        app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_2CH(5000L, BSP_LED_0, ARDUINO_13_PIN);  //2-channel PWM, 200Hz, output on DK LED pins.
    
     // 2-channel PWM, 200Hz, output on DK LED pins.
    
        pwm1_cfg.pin_polarity[1] = APP_PWM_POLARITY_ACTIVE_HIGH; //Switch the polarity of the second channel.
    
    
      
        NRF_LOG_INFO("SAADC HAL simple example started."); 
        
        err_code_p = app_pwm_init(&PWM1,&pwm1_cfg,pwm_ready_callback);
        APP_ERROR_CHECK(err_code_p);
    
      app_pwm_enable(&PWM1);
         
        
        // Enter main loop. 
              
                                                      
     while (1)
            {
      while (app_pwm_channel_duty_set(&PWM1, 1, 30));
        //CLOCK
        if(ble_val[0]=='1' && ble_val[2] == '1') //90  
        //if(ble_val[0] == '1')
        {
      // nrf_gpio_pin_toggle(15);
           if(!(adc_value2>=500 && adc_value2<=600))
           {
             while (app_pwm_channel_duty_set(&PWM1, 1, 35));
          //  nrf_gpio_pin_toggle(16);
             
            }
        }
       
        if(ble_val[0]=='1' && ble_val[2] == '2') //180 
        // if(ble_val[0] == '2')
        {
           if(!(adc_value2>=300 && adc_value2<=400))
           {
             while (app_pwm_channel_duty_set(&PWM1, 0, 35));
             
            }
        }
        if(ble_val[0]=='1' && ble_val[2] == '3') //270
         //if(ble_val[0] == '3')
        {
           if(!(val>=30 && val<=100))
           {
             while (app_pwm_channel_duty_set(&PWM1, 1, 35));
             
            }
        }
         if(ble_val[0]=='1' && ble_val[2] == '4') //360 
         // if(ble_val[0] == '4')
        {
           if(!(val>=200 && val<=300))
           {
             while (app_pwm_channel_duty_set(&PWM1, 1, 35));
            
            }
        } //COUNTER-CLOCK
         //if(ble_val[0] == '5')
         if(ble_val[0]=='1' && ble_val[2] == '5') //90  
        {
           if(!(adc_value2>=500 && adc_value2<=600))
           {
             while (app_pwm_channel_duty_set(&PWM1, 1, 25));
             
            }
        }
         if(ble_val[0]=='1' && ble_val[2] == '6') //180  
          //if(ble_val[0] == '6')
        {
           if(!(adc_value2>=300 && adc_value2<=400))
           {
             while (app_pwm_channel_duty_set(&PWM1, 1, 25));
            
            }
        }
         //if(ble_val[0] == '7')
          if(ble_val[0]=='1' && ble_val[2] == '7') //270 
        {
           if(!(adc_value2>=30 && adc_value2<=100))
           {
             while (app_pwm_channel_duty_set(&PWM1, 1, 25));
            }
        }
          //if(ble_val[0]=='1' && ble_val[2] == '8') //360  
          }
            
            
            
        }
    
     
           
          
     
    
    /**
     * @}
     */
    

  • What happens when you try to connect? Does it say something in the log?

  • ok. Try to debug. Do you get the BLE_GAP_EVT_CONNECTED event?

  • its appearing when i am trying to connect, it taking too much time to connect and disconnecting within ms .

Reply Children
No Data
Related