Hello,
Im using pca10059 to scan for near beacons address and RSSI, but i also want to look for its battery level. (im using pca10056 to develop and debug)
I've found some posts here talking about checking its own battery, as a peripheral. But in my case its working as a central, i managed to modify usbd_ble_uart example to get address and rssi.
This is the section of the code when i read the address and rssi and send it to the usbd serial port, when ble_evt is BLE_GAP_EVT_ADV_REPORT:
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t ret; uint32_t err_code; ret = app_usbd_power_events_enable(); switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("BLE NUS Central connected"); err_code = ble_nus_c_handles_assign(&m_ble_nus_c, p_ble_evt->evt.gap_evt.conn_handle, NULL); APP_ERROR_CHECK(err_code); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); // start discovery of services. The NUS Client waits for a discovery result err_code = ble_db_discovery_start(&m_db_disc, p_ble_evt->evt.gap_evt.conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("BLE NUS Central disconnected"); break; case BLE_GAP_EVT_ADV_REPORT: if( p_ble_evt->evt.gap_evt.params.adv_report.data.p_data[5] == 0xAA && p_ble_evt->evt.gap_evt.params.adv_report.data.p_data[6] == 0xFE ){ size_t size = sprintf(m_tx_buffer, "{\"Device\":\"%02x:%02x:%02x:%02x:%02x:%02x\",\"RSSI\":%d}\r\n", p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[5], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[4], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[3], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[2], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[1], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[0], p_ble_evt->evt.gap_evt.params.adv_report.rssi); ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, m_tx_buffer, size); } break;
How can i read the battery level of the peripheral as well?
my actual output is like this:
Full code:
/** * Copyright (c) 2017 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup usbd_ble_uart_example main.c * @{ * @ingroup usbd_ble_uart_example * @brief USBD CDC ACM over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service * and USBD CDC ACM library. * This application uses the @ref srvlib_conn_params module. */ #include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "app_timer.h" #include "ble_nus_c.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_ble_scan.h" #include "ble_db_discovery.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_drv_usbd.h" #include "nrf_drv_clock.h" #include "nrf_gpio.h" #include "nrf_delay.h" #include "nrf_drv_power.h" #include "app_error.h" #include "app_util.h" #include "app_usbd_core.h" #include "app_usbd.h" #include "app_usbd_string_desc.h" #include "app_usbd_cdc_acm.h" #include "app_usbd_serial_num.h" #define LED_BLE_NUS_CONN (BSP_BOARD_LED_0) #define LED_BLE_NUS_RX (BSP_BOARD_LED_1) #define LED_CDC_ACM_CONN (BSP_BOARD_LED_2) #define LED_CDC_ACM_RX (BSP_BOARD_LED_3) #define LED_BLINK_INTERVAL 800 APP_TIMER_DEF(m_blink_ble); APP_TIMER_DEF(m_blink_cdc); /** * @brief App timer handler for blinking the LEDs. * * @param p_context LED to blink. */ void blink_handler(void * p_context) { bsp_board_led_invert((uint32_t) p_context); } #define ENDLINE_STRING "\r\n" // USB DEFINES START static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst, app_usbd_cdc_acm_user_event_t event); #define CDC_ACM_COMM_INTERFACE 0 #define CDC_ACM_COMM_EPIN NRF_DRV_USBD_EPIN2 #define CDC_ACM_DATA_INTERFACE 1 #define CDC_ACM_DATA_EPIN NRF_DRV_USBD_EPIN1 #define CDC_ACM_DATA_EPOUT NRF_DRV_USBD_EPOUT1 static char m_cdc_data_array[BLE_NUS_MAX_DATA_LEN]; /** @brief CDC_ACM class instance */ APP_USBD_CDC_ACM_GLOBAL_DEF(m_app_cdc_acm, cdc_acm_user_ev_handler, CDC_ACM_COMM_INTERFACE, CDC_ACM_DATA_INTERFACE, CDC_ACM_COMM_EPIN, CDC_ACM_DATA_EPIN, CDC_ACM_DATA_EPOUT, APP_USBD_CDC_COMM_PROTOCOL_AT_V250); // USB DEFINES END // BLE DEFINES START #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define APP_FEATURE_NOT_SUPPORTED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2 /**< Reply when unsupported features are requested. */ #define DEVICE_NAME "Nordic_USBD_BLE_UART" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms). Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms). Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds). Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating an event (connect or start of notification) to the first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump. Can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define ECHOBACK_BLE_UART_DATA 1 /**< Echo the UART data that is received over the Nordic UART Service (NUS) back to the sender. */ BLE_NUS_C_DEF(m_ble_nus_c); NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ BLE_DB_DISCOVERY_DEF(m_db_disc); /**< Database discovery module instance. */ NRF_BLE_SCAN_DEF(m_scan); /**< Scanning Module instance. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static char m_nus_data_array[BLE_NUS_MAX_DATA_LEN]; static char m_tx_buffer[NRF_DRV_USBD_EPSIZE]; /**@brief NUS UUID. */ static ble_uuid_t const m_nus_uuid = { .uuid = BLE_UUID_NUS_SERVICE, .type = NUS_SERVICE_UUID_TYPE }; // BLE DEFINES END /** * @brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of an assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for starting scanning. */ static void scan_start(void) { ret_code_t ret; m_scan.scan_params.interval=20; ret = nrf_ble_scan_start(&m_scan); APP_ERROR_CHECK(ret); ret = bsp_indication_set(BSP_INDICATE_SCANNING); APP_ERROR_CHECK(ret); } /** @brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); err_code = app_timer_create(&m_blink_ble, APP_TIMER_MODE_REPEATED, blink_handler); APP_ERROR_CHECK(err_code); err_code = app_timer_create(&m_blink_cdc, APP_TIMER_MODE_REPEATED, blink_handler); APP_ERROR_CHECK(err_code); } /** * @brief Function for the GAP initialization. * * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Scanning Module events. */ static void scan_evt_handler(scan_evt_t const * p_scan_evt) { ret_code_t err_code; switch(p_scan_evt->scan_evt_id) { case NRF_BLE_SCAN_EVT_CONNECTING_ERROR: { err_code = p_scan_evt->params.connecting_err.err_code; APP_ERROR_CHECK(err_code); } break; case NRF_BLE_SCAN_EVT_CONNECTED: { ble_gap_evt_connected_t const * p_connected = p_scan_evt->params.connected.p_connected; // Scan is automatically stopped by the connection. NRF_LOG_INFO("Connecting to target %02x%02x%02x%02x%02x%02x", p_connected->peer_addr.addr[0], p_connected->peer_addr.addr[1], p_connected->peer_addr.addr[2], p_connected->peer_addr.addr[3], p_connected->peer_addr.addr[4], p_connected->peer_addr.addr[5] ); } break; case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT: { NRF_LOG_INFO("Scan timed out."); scan_start(); } break; default: break; } } /**@brief Function for initializing the scanning and setting the filters. */ static void scan_init(void) { ret_code_t err_code; nrf_ble_scan_init_t init_scan; memset(&init_scan, 0, sizeof(init_scan)); init_scan.connect_if_match = true; init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG; err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &m_nus_uuid); APP_ERROR_CHECK(err_code); err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_UUID_FILTER, false); APP_ERROR_CHECK(err_code); } /**@brief Function for handling database discovery events. * * @details This function is a callback function to handle events from the database discovery module. * Depending on the UUIDs that are discovered, this function forwards the events * to their respective services. * * @param[in] p_event Pointer to the database discovery event. */ static void db_disc_handler(ble_db_discovery_evt_t * p_evt) { ble_nus_c_on_db_disc_evt(&m_ble_nus_c, p_evt); } /** * @brief Function for handling the data from the Nordic UART Service. * * @details This function processes the data received from the Nordic UART BLE Service and sends * it to the USBD CDC ACM module. * * @param[in] p_evt Nordic UART Service event. */ #if 0 static void nus_data_handler(ble_nus_evt_t * p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { bsp_board_led_invert(LED_BLE_NUS_RX); NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on CDC ACM."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); memcpy(m_nus_data_array, p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); // Add endline characters uint16_t length = p_evt->params.rx_data.length; if (length + sizeof(ENDLINE_STRING) < BLE_NUS_MAX_DATA_LEN) { memcpy(m_nus_data_array + length, ENDLINE_STRING, sizeof(ENDLINE_STRING)); length += sizeof(ENDLINE_STRING); } // Send data through CDC ACM ret_code_t ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, m_nus_data_array, length); if(ret != NRF_SUCCESS) { NRF_LOG_INFO("CDC ACM unavailable, data received: %s", m_nus_data_array); } } } #endif /**@brief Function for handling characters received by the Nordic UART Service (NUS). * * @details This function takes a list of characters of length data_len and prints the characters out on UART. * If @ref ECHOBACK_BLE_UART_DATA is set, the data is sent back to sender. */ static void ble_nus_chars_received_uart_print(uint8_t * p_data, uint16_t data_len) { bsp_board_led_invert(LED_BLE_NUS_RX); NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on CDC ACM."); NRF_LOG_HEXDUMP_DEBUG(p_data, data_len); memcpy(m_nus_data_array, p_data, data_len); // Add endline characters uint16_t length = data_len; if (length + sizeof(ENDLINE_STRING) < BLE_NUS_MAX_DATA_LEN) { memcpy(m_nus_data_array + length, ENDLINE_STRING, sizeof(ENDLINE_STRING)); length += sizeof(ENDLINE_STRING); } // Send data through CDC ACM ret_code_t ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, m_nus_data_array, length); if(ret != NRF_SUCCESS) { NRF_LOG_INFO("CDC ACM unavailable, data received: %s", m_nus_data_array); } } /**@brief Callback handling Nordic UART Service (NUS) client events. * * @details This function is called to notify the application of NUS client events. * * @param[in] p_ble_nus_c NUS client handle. This identifies the NUS client. * @param[in] p_ble_nus_evt Pointer to the NUS client event. */ /**@snippet [Handling events from the ble_nus_c module] */ static void ble_nus_c_evt_handler(ble_nus_c_t * p_ble_nus_c, ble_nus_c_evt_t const * p_ble_nus_evt) { ret_code_t err_code; switch (p_ble_nus_evt->evt_type) { case BLE_NUS_C_EVT_DISCOVERY_COMPLETE: NRF_LOG_INFO("Discovery complete."); err_code = ble_nus_c_handles_assign(p_ble_nus_c, p_ble_nus_evt->conn_handle, &p_ble_nus_evt->handles); //APP_ERROR_CHECK(err_code); err_code = ble_nus_c_tx_notif_enable(p_ble_nus_c); //APP_ERROR_CHECK(err_code); NRF_LOG_INFO("Connected to device with Nordic UART Service."); break; case BLE_NUS_C_EVT_NUS_TX_EVT: ble_nus_chars_received_uart_print(p_ble_nus_evt->p_data, p_ble_nus_evt->data_len); break; case BLE_NUS_C_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected."); scan_start(); break; } } /**@snippet [Handling events from the ble_nus_c module] */ /**@brief Function for initializing the Nordic UART Service (NUS) client. */ static void nus_c_init(void) { ret_code_t err_code; ble_nus_c_init_t init; init.evt_handler = ble_nus_c_evt_handler; err_code = ble_nus_c_init(&m_ble_nus_c, &init); //APP_ERROR_CHECK(err_code); } /** * @brief Function for putting the chip into sleep mode. * * @note This function does not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /** * @brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t ret; uint32_t err_code; ret = app_usbd_power_events_enable(); switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("BLE NUS Central connected"); err_code = ble_nus_c_handles_assign(&m_ble_nus_c, p_ble_evt->evt.gap_evt.conn_handle, NULL); APP_ERROR_CHECK(err_code); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); // start discovery of services. The NUS Client waits for a discovery result err_code = ble_db_discovery_start(&m_db_disc, p_ble_evt->evt.gap_evt.conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("BLE NUS Central disconnected"); break; case BLE_GAP_EVT_ADV_REPORT: if( p_ble_evt->evt.gap_evt.params.adv_report.data.p_data[5] == 0xAA && p_ble_evt->evt.gap_evt.params.adv_report.data.p_data[6] == 0xFE ){ size_t size = sprintf(m_tx_buffer, "{\"Device\":\"%02x:%02x:%02x:%02x:%02x:%02x\",\"RSSI\":%d}\r\n", p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[5], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[4], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[3], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[2], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[1], p_ble_evt->evt.gap_evt.params.adv_report.peer_addr.addr[0], p_ble_evt->evt.gap_evt.params.adv_report.rssi); ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, m_tx_buffer, size); } break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported. err_code = sd_ble_gap_sec_params_reply(p_ble_evt->evt.gap_evt.conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST: { ble_gap_data_length_params_t dl_params; // Clearing the struct will effectively set members to @ref BLE_GAP_DATA_LENGTH_AUTO. memset(&dl_params, 0, sizeof(ble_gap_data_length_params_t)); err_code = sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, &dl_params, NULL); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_EVT_USER_MEM_REQUEST: err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST: { ble_gatts_evt_rw_authorize_request_t req; ble_gatts_rw_authorize_reply_params_t auth_reply; req = p_ble_evt->evt.gatts_evt.params.authorize_request; if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID) { if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL)) { if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE) { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE; } else { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ; } auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED; err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle, &auth_reply); APP_ERROR_CHECK(err_code); } } } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST default: // No implementation needed. break; } } /** * @brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /** @brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED) { NRF_LOG_INFO("ATT MTU exchange completed."); m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Ble NUS max data length set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } } /** @brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /** * @brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_ble_nus_c.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: break; default: break; } } /** @brief Function for initializing buttons and LEDs. */ static void buttons_leds_init(void) { uint32_t err_code = bsp_init(BSP_INIT_LEDS, bsp_event_handler); APP_ERROR_CHECK(err_code); } /** @brief Function for initializing the nrf_log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /** @brief Function for placing the application in low power state while waiting for events. */ static void power_manage(void) { uint32_t err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } /** * @brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { UNUSED_RETURN_VALUE(NRF_LOG_PROCESS()); power_manage(); } // USB CODE START static bool m_usb_connected = false; /** @brief User event handler @ref app_usbd_cdc_acm_user_ev_handler_t */ static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst, app_usbd_cdc_acm_user_event_t event) { app_usbd_cdc_acm_t const * p_cdc_acm = app_usbd_cdc_acm_class_get(p_inst); switch (event) { case APP_USBD_CDC_ACM_USER_EVT_PORT_OPEN: { /*Set up the first transfer*/ ret_code_t ret = app_usbd_cdc_acm_read(&m_app_cdc_acm, m_cdc_data_array, 1); UNUSED_VARIABLE(ret); ret = app_timer_stop(m_blink_cdc); APP_ERROR_CHECK(ret); bsp_board_led_on(LED_CDC_ACM_CONN); NRF_LOG_INFO("CDC ACM port opened"); break; } case APP_USBD_CDC_ACM_USER_EVT_PORT_CLOSE: NRF_LOG_INFO("CDC ACM port closed"); if (m_usb_connected) { ret_code_t ret = app_timer_start(m_blink_cdc, APP_TIMER_TICKS(LED_BLINK_INTERVAL), (void *) LED_CDC_ACM_CONN); APP_ERROR_CHECK(ret); } break; case APP_USBD_CDC_ACM_USER_EVT_TX_DONE: break; case APP_USBD_CDC_ACM_USER_EVT_RX_DONE: { ret_code_t ret; static uint8_t index = 0; index++; do { if ((m_cdc_data_array[index - 1] == '\n') || (m_cdc_data_array[index - 1] == '\r') || (index >= (m_ble_nus_max_data_len))) { if (index > 1) { bsp_board_led_invert(LED_CDC_ACM_RX); NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(m_cdc_data_array, index); do { uint16_t length = (uint16_t)index; if (length + sizeof(ENDLINE_STRING) < BLE_NUS_MAX_DATA_LEN) { memcpy(m_cdc_data_array + length, ENDLINE_STRING, sizeof(ENDLINE_STRING)); length += sizeof(ENDLINE_STRING); } ret = ble_nus_c_string_send(&m_ble_nus_c, (uint8_t *) m_cdc_data_array, length); if (ret == NRF_ERROR_NOT_FOUND) { NRF_LOG_INFO("BLE NUS unavailable, data received: %s", m_cdc_data_array); break; } if (ret == NRF_ERROR_RESOURCES) { NRF_LOG_ERROR("BLE NUS Too many notifications queued."); break; } if ((ret != NRF_ERROR_INVALID_STATE) && (ret != NRF_ERROR_BUSY)) { APP_ERROR_CHECK(ret); } } while (ret == NRF_ERROR_BUSY); } index = 0; } /*Get amount of data transferred*/ size_t size = app_usbd_cdc_acm_rx_size(p_cdc_acm); NRF_LOG_DEBUG("RX: size: %lu char: %c", size, m_cdc_data_array[index - 1]); /* Fetch data until internal buffer is empty */ ret = app_usbd_cdc_acm_read(&m_app_cdc_acm, &m_cdc_data_array[index], 1); if (ret == NRF_SUCCESS) { index++; } } while (ret == NRF_SUCCESS); break; } default: break; } } static void usbd_user_ev_handler(app_usbd_event_type_t event) { switch (event) { case APP_USBD_EVT_DRV_SUSPEND: break; case APP_USBD_EVT_DRV_RESUME: break; case APP_USBD_EVT_STARTED: break; case APP_USBD_EVT_STOPPED: app_usbd_disable(); break; case APP_USBD_EVT_POWER_DETECTED: NRF_LOG_INFO("USB power detected"); if (!nrf_drv_usbd_is_enabled()) { app_usbd_enable(); } break; case APP_USBD_EVT_POWER_REMOVED: { NRF_LOG_INFO("USB power removed"); ret_code_t err_code = app_timer_stop(m_blink_cdc); APP_ERROR_CHECK(err_code); bsp_board_led_off(LED_CDC_ACM_CONN); m_usb_connected = false; app_usbd_stop(); } break; case APP_USBD_EVT_POWER_READY: { NRF_LOG_INFO("USB ready"); ret_code_t err_code = app_timer_start(m_blink_cdc, APP_TIMER_TICKS(LED_BLINK_INTERVAL), (void *) LED_CDC_ACM_CONN); APP_ERROR_CHECK(err_code); m_usb_connected = true; app_usbd_start(); } break; default: break; } } // USB CODE END /** @brief Function for initializing the database discovery module. */ static void db_discovery_init(void) { ret_code_t err_code = ble_db_discovery_init(db_disc_handler); APP_ERROR_CHECK(err_code); } /** @brief Application main function. */ int main(void) { ret_code_t ret; static const app_usbd_config_t usbd_config = { .ev_state_proc = usbd_user_ev_handler }; // Initialize. log_init(); timers_init(); buttons_leds_init(); app_usbd_serial_num_generate(); ret = nrf_drv_clock_init(); APP_ERROR_CHECK(ret); NRF_LOG_INFO("USBD BLE UART Central example started."); ret = app_usbd_init(&usbd_config); APP_ERROR_CHECK(ret); app_usbd_class_inst_t const * class_cdc_acm = app_usbd_cdc_acm_class_inst_get(&m_app_cdc_acm); ret = app_usbd_class_append(class_cdc_acm); APP_ERROR_CHECK(ret); db_discovery_init(); ble_stack_init(); gap_params_init(); gatt_init(); nus_c_init(); scan_init(); scan_start(); ret = app_usbd_power_events_enable(); APP_ERROR_CHECK(ret); // Enter main loop. for (;;) { while (app_usbd_event_queue_process()) { /* Nothing to do */ } idle_state_handle(); } } /** * @} */
Thanks in advance!!