This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

How to Bond the device ( through bluetooth ) to my app?

I am trying to have a bluetooth bond between the device and the app,

how to set a security key to bond it with the android app? and also can I know how to encrypt all the data that are to be sent through this device?

Parents Reply Children
  • Hi,

    As per the link you sent, I referred to it.

    I hence checked out the given example:

    But I get an error in this code after I added it to my program : 

    Below attached my code for your reference:

    /**
     * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    /** @file
     * Peripheral: SAADC
     * Compatibility: nRF52832 rev 2/nRF52840 rev 1, SDK 15.2.0
     * Softdevice used: S132 v6.1.0/S140 v6.1.0
     *
     * This SAADC example samples on 4 different input pins, and enables scan mode to do that. It is otherwise an
     * offsprint from the standard ble_app_uart example available in nRF5 SDK 15.2.0
     * Works together with softdevice S132 v6.1.0 on nRF52832 and S140 v6.1.0 on nRF52840
     * Transmits SAADC output to hardware UART and over BLE via Nordic UART Servive (NUS).
     * Info on NUS -> http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v13.0.0/ble_sdk_app_nus_eval.html?cp=4_0_0_4_1_2_17
     * Info on hardware UART settings -> http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v13.0.0/uart_example.html?cp=4_0_0_4_4_41
     */
    
    
    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    #include "nrf_drv_saadc.h"
    #include "nrf_drv_ppi.h"
    #include "nrf_drv_timer.h"
    #include "peer_manager.h"
    #include "peer_manager_handler.h"
    #include "nrf_drv_twi.h"
    #include "nrf_delay.h"
    
    #include "app_pwm.h"
    
    #include "nrf_calendar.h"
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "IEDC_BRD2"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */
    
    #define SAADC_SAMPLES_IN_BUFFER         4
    #define SAADC_SAMPLE_RATE		250                                         /**< SAADC sample rate in ms. */               
    
    
    #define BRD_LED1 8
    #define BRD_LED2 11
    #define BRD_LED3 12
    #define BRD_LED4 14
    
    #define MOT_CTL 7
    
    #define BAT_STATE 6
    #define KEY_PIN 30
    
    #define SEC_PARAM_BOND                  1                                           /**< Perform bonding. */
    #define SEC_PARAM_MITM                  1                                           /**< Man In The Middle protection required (applicable when display module is detected). */
    #define SEC_PARAM_LESC                  1                                           /**< LE Secure Connections enabled. */
    #define SEC_PARAM_KEYPRESS              0                                           /**< Keypress notifications not enabled. */
    #define SEC_PARAM_IO_CAPABILITIES       BLE_GAP_IO_CAPS_DISPLAY_ONLY                /**< Display I/O capabilities. */
    #define SEC_PARAM_OOB                   0                                           /**< Out Of Band data not available. */
    #define SEC_PARAM_MIN_KEY_SIZE          7                                           /**< Minimum encryption key size. */
    #define SEC_PARAM_MAX_KEY_SIZE          16                                          /**< Maximum encryption key size. */
    
    #define PASSKEY_TXT                     "Passkey:"                                  /**< Message to be displayed together with the pass-key. */
    #define PASSKEY_TXT_LENGTH              8                                           /**< Length of message to be displayed together with the pass-key. */
    #define PASSKEY_LENGTH                  6                                           /**< Length of pass-key received by the stack for display. */
    
    static pm_peer_id_t m_peer_to_be_deleted = PM_PEER_ID_INVALID;
    static uint16_t     m_conn_handle        = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    
    
    static void pm_evt_handler(pm_evt_t const * p_evt)
    {
        ret_code_t err_code;
    
        pm_handler_on_pm_evt(p_evt);
        pm_handler_disconnect_on_sec_failure(p_evt);
        pm_handler_flash_clean(p_evt);
    
        switch (p_evt->evt_id)
        {
            case PM_EVT_CONN_SEC_SUCCEEDED:
            {
                pm_conn_sec_status_t conn_sec_status;
    
                // Check if the link is authenticated (meaning at least MITM).
                err_code = pm_conn_sec_status_get(p_evt->conn_handle, &conn_sec_status);
                APP_ERROR_CHECK(err_code);
    
                if (conn_sec_status.mitm_protected)
                {
                    NRF_LOG_INFO("Link secured. Role: %d. conn_handle: %d, Procedure: %d",
                                 ble_conn_state_role(p_evt->conn_handle),
                                 p_evt->conn_handle,
                                 p_evt->params.conn_sec_succeeded.procedure);
                }
                else
                {
                    // The peer did not use MITM, disconnect.
                    NRF_LOG_INFO("Collector did not use MITM, disconnecting");
                    err_code = pm_peer_id_get(m_conn_handle, &m_peer_to_be_deleted);
                    APP_ERROR_CHECK(err_code);
                    err_code = sd_ble_gap_disconnect(m_conn_handle,
                                                     BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                    APP_ERROR_CHECK(err_code);
                }
            } break;
    
            case PM_EVT_CONN_SEC_FAILED:
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case PM_EVT_PEERS_DELETE_SUCCEEDED:
                advertising_start(false);
                break;
    
            default:
                break;
        }
    }
    
    
    typedef struct
    {
        int16_t z;
        int16_t y;
        int16_t x;
    }accel_values_t;
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /*< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
                    /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    
    static dc = 50;
    static kk = 0;
    static button = 0;
    
    volatile uint8_t state = 1;
    volatile uint16_t Battery_voltage,Battery_current,FSR_voltage;
    
    #define TIMER_INTERVAL_ACCEL_UPDATE     APP_TIMER_TICKS(5000) // 2000 ms intervals
    volatile bool start_accel_update_flag = false;
    APP_TIMER_DEF(m_timer_accel_update_id);
    
    #define TIMER_INTERVAL_ADC_UPDATE     APP_TIMER_TICKS(3000) // 3000 ms intervals
    volatile bool start_adc_update_flag = false;
    APP_TIMER_DEF(m_timer_adc_update_id);
    
    #define TIMER_INTERVAL_PWM_UPDATE     APP_TIMER_TICKS(500) // 500 ms intervals
    APP_TIMER_DEF(m_timer_pwm_update_id);
    volatile bool start_pwm_update_flag = false;
    
    
    volatile bool bat_low = 0,charge=0,vibrate_on = 0;
    volatile uint16_t Vibrate_value , Temp_value ,Vibrate_value2;
    
    #ifdef NRF52810_XXAA
    static const nrf_drv_timer_t   m_timer = NRF_DRV_TIMER_INSTANCE(2);
    #else
    static const nrf_drv_timer_t   m_timer = NRF_DRV_TIMER_INSTANCE(3);
    #endif
    static nrf_saadc_value_t       m_buffer_pool[2][SAADC_SAMPLES_IN_BUFFER];
    static nrf_ppi_channel_t       m_ppi_channel;
    static uint32_t                m_adc_evt_counter;
    
    volatile uint32_t vibrate_count;
    volatile uint32_t right;
    volatile uint32_t left;
    
    static bool bl_command=0;
    static uint8_t bluetooth_command[4];
    
    static uint8_t accel_values_array[6];
    /* TWI instance ID. */
    #define TWI_INSTANCE_ID     0
    
    /* Common addresses definition for sensor. */
    #define ICM20948_ADDR          0x68 //(0x90U >> 1)
    #define MPU_REG_ACCEL_XOUT_H   0x2D
    
    /* Indicates if operation on TWI has ended. */
    static volatile bool m_xfer_done = false;
    
    /* TWI instance. */
    static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);
    
    
    extern void Convert_to_ascii(uint16_t num,uint8_t *num_array,uint8_t n);
    extern void  Convert_Ascii_array_to_int(uint8_t *ascii_array, uint8_t c);
    
    /* Buffer for samples read from sensor. */
    static uint8_t m_sample;
    
    APP_PWM_INSTANCE(PWM1,1);                   // Create the instance "PWM1" using TIMER1.
    
    static volatile bool ready_flag;            // A flag indicating PWM status.
    
    void pwm_ready_callback(uint32_t pwm_id)    // PWM callback function
    {
        ready_flag = true;
    }
    
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    void timer_accel_update_handler(void * p_context)
    {
        start_accel_update_flag = true;
    }
    
    
    void timer_adc_update_handler(void * p_context)
    {
        start_adc_update_flag = true;
    }
    
    void timer_pwm_update_handler(void * p_context)
    {
        start_pwm_update_flag = true;
    }
    
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
        err_code = app_timer_create(&m_timer_accel_update_id, APP_TIMER_MODE_REPEATED, timer_accel_update_handler);
        APP_ERROR_CHECK(err_code);
    
         err_code = app_timer_create(&m_timer_adc_update_id, APP_TIMER_MODE_REPEATED, timer_adc_update_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = app_timer_create(&m_timer_pwm_update_id, APP_TIMER_MODE_REPEATED, timer_pwm_update_handler);
        APP_ERROR_CHECK(err_code);
    
    
    
    }
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    
    static volatile bool send_time_update = false;
    
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    NRF_LOG_INFO("BLINKY START\n");
          uint8_t vib_cnt_buf[5],vibrate_count_array[3],vvv[3];
          ret_code_t err_code;
          uint16_t length = 8,i=0,len1=2,len2=6,ha = 3,lendt = 16;
          uint8_t message1[]= "OK" ;
          uint8_t message2[]= "NOT OK" ;
    
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
            uint32_t err_code;
    
    
          if (p_evt->params.rx_data.p_data[0]=='O')
          {   button = 1;
          }
    
    
    if(p_evt->params.rx_data.p_data[0] == 'T')
            {
                send_time_update = true;
            }
    
    
    //----------------------------higher and lower threshold--------------------------------------
    
        
          if (p_evt->params.rx_data.p_data[0]=='L')
          {
              memcpy(&vvv[0], (&p_evt->params.rx_data.p_data[1]),3);
                 Convert_Ascii_array_to_int(&vvv[0],3);
                 Vibrate_value2 = Temp_value;
    
          }
    
          if (p_evt->params.rx_data.p_data[0]=='H')
          {
              memcpy(&vvv[0], (&p_evt->params.rx_data.p_data[1]),3);
                 Convert_Ascii_array_to_int(&vvv[0],3);
                 Vibrate_value = Temp_value;
                 Convert_to_ascii(Temp_value,(&vib_cnt_buf[0]),3);
                 
    
          }
    //-------------------------------------------------------------------------------------------------
    
    //-------------------------leg??-----------------------------------------------
        if ((p_evt->params.rx_data.p_data[0]=='l')&&(p_evt->params.rx_data.p_data[1]=='e')&&(p_evt->params.rx_data.p_data[2]=='g'))
        {
          if(p_evt->params.rx_data.p_data[3]=='L')
            kk = 1;
          else
            kk = 0;
        }
    
    //---------------------------------------------
          
          
           if(p_evt->params.rx_data.p_data[0]=='P')
           {
              memcpy(&vvv[0], (&p_evt->params.rx_data.p_data[1]),3);
              Convert_Ascii_array_to_int(&vvv[0],3);
              dc = Temp_value;
           }
          
          
           if((p_evt->params.rx_data.p_data[0]=='a')&&(p_evt->params.rx_data.p_data[1]=='a')) 
                       {
                  bl_command = 1;
                  
                  if (kk == 0)
                {
                  Convert_to_ascii(right,(&vib_cnt_buf[0]),8);
                  Convert_to_ascii(left,(&vib_cnt_buf[2]),2);
                  //err_code = ble_nus_data_send(&m_nus, (&vib_cnt_buf[0]), &length, m_conn_handle);
                  err_code = ble_nus_data_send(&m_nus, (&vib_cnt_buf), &length, m_conn_handle);
                }
               
                else
    
                {
                  Convert_to_ascii(right,(&vib_cnt_buf[0]),8);
                  Convert_to_ascii(left,(&vib_cnt_buf[2]),2);
                  //err_code = ble_nus_data_send(&m_nus, (&vib_cnt_buf[0]), &length, m_conn_handle);
                  err_code = ble_nus_data_send(&m_nus, (&vib_cnt_buf), &length, m_conn_handle);
                }
    
    
              }
               else if((p_evt->params.rx_data.p_data[0]=='*')&&(p_evt->params.rx_data.p_data[1]=='*'))
              {
               //  for(i=0;i<3;i++)
               //   vibrate_count_array[i] = p_evt->params.rx_data.p_data[1+i];
                 memcpy(&vibrate_count_array[0], (&p_evt->params.rx_data.p_data[2]),3);
                 Convert_Ascii_array_to_int(&vibrate_count_array[0],3);
                if((Temp_value > 150 ) & (Temp_value < 999 ))
                {   
                   Vibrate_value = Temp_value ;
    
                  err_code = ble_nus_data_send(&m_nus, message1, &len1, m_conn_handle);
                  }
                  else
                  {
    
                  err_code = ble_nus_data_send(&m_nus, message2, &len2, m_conn_handle);
                  }
    
                  
              }
              else if((p_evt->params.rx_data.p_data[0]=='&')&&(p_evt->params.rx_data.p_data[1]=='&'))
              {
               //  for(i=0;i<3;i++)
               //   vibrate_count_array[i] = p_evt->params.rx_data.p_data[1+i];
                 memcpy(&vibrate_count_array[0], (&p_evt->params.rx_data.p_data[2]),3);
                 Convert_Ascii_array_to_int(&vibrate_count_array[0],3);
                if((Temp_value > 50 ) & (Temp_value < 150 ))
                {   
                   Vibrate_value2 = Temp_value ;
    
                  err_code = ble_nus_data_send(&m_nus, message1, &len1, m_conn_handle);
                  }
                  else
                  {
    
                  err_code = ble_nus_data_send(&m_nus, message2, &len2, m_conn_handle);
                  }
    
                  
              }
                
        }
    
    
        
           
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    
    
    static void peer_manager_init(void)
    {
        ble_gap_sec_params_t sec_param;
        ret_code_t           err_code;
    
        err_code = pm_init();
        APP_ERROR_CHECK(err_code);
    
        memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));
    
        // Security parameters to be used for all security procedures.
        sec_param.bond           = SEC_PARAM_BOND;
        sec_param.mitm           = SEC_PARAM_MITM;
        sec_param.lesc           = SEC_PARAM_LESC;
        sec_param.keypress       = SEC_PARAM_KEYPRESS;
        sec_param.io_caps        = SEC_PARAM_IO_CAPABILITIES;
        sec_param.oob            = SEC_PARAM_OOB;
        sec_param.min_key_size   = SEC_PARAM_MIN_KEY_SIZE;
        sec_param.max_key_size   = SEC_PARAM_MAX_KEY_SIZE;
        sec_param.kdist_own.enc  = 1;
        sec_param.kdist_own.id   = 1;
        sec_param.kdist_peer.enc = 1;
        sec_param.kdist_peer.id  = 1;
    
        err_code = pm_sec_params_set(&sec_param);
        APP_ERROR_CHECK(err_code);
    
        err_code = pm_register(pm_evt_handler);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Clear bond information from persistent storage.
     */
    static void delete_bonds(void)
    {
        ret_code_t err_code;
    
        NRF_LOG_INFO("Erase bonds!");
    
        err_code = pm_peers_delete();
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
               // sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                //err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                //APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event)
    {
        uint32_t err_code;
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Function for handling app_uart events.
     *
     * @details This function will receive a single character from the app_uart module and append it to
     *          a string. The string will be be sent over BLE when the last character received was a
     *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
     */
    /**@snippet [Handling the data received over UART] */
    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
        static uint8_t index = 0;
        uint32_t       err_code;
    
        switch (p_event->evt_type)
        {
            case APP_UART_DATA_READY:
                UNUSED_VARIABLE(app_uart_get(&data_array[index]));
                index++;
    
                if ((data_array[index - 1] == '\n') ||
                    (data_array[index - 1] == '\r') ||
                    (index >= m_ble_nus_max_data_len))
                {
                    if (index > 1)
                    {
                        NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                        NRF_LOG_HEXDUMP_DEBUG(data_array, index);
    
                        do
                        {
                            uint16_t length = (uint16_t)index;
                            err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                            if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                (err_code != NRF_ERROR_RESOURCES) &&
                                (err_code != NRF_ERROR_NOT_FOUND))
                            {
                                APP_ERROR_CHECK(err_code);
                            }
                        } while (err_code == NRF_ERROR_RESOURCES);
                    }
    
                    index = 0;
                }
                break;
    
            case APP_UART_COMMUNICATION_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_communication);
                break;
    
            case APP_UART_FIFO_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_code);
                break;
    
            default:
                break;
        }
    }
    /**@snippet [Handling the data received over UART] */
    
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER,
            .tx_pin_no    = TX_PIN_NUMBER,
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_event_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    }
    /**@snippet [UART Initialization] */
    
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
       ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t startup_event;
    
        uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    static void idle_state_handle(void)
    {
        UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
        nrf_pwr_mgmt_run();
    }
    
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(bool erase_bonds)
    {
        if (erase_bonds == true)
        {
            delete_bonds();
            // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event.
        }
        else
        {
            ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    //////////////////////////////////////////////////////
    uint32_t bluetooth_sleep(void)
    {
    	uint32_t err_code;
    
    	// If connected, disconnect
    	if (m_conn_handle != BLE_CONN_HANDLE_INVALID)
    	{
    		err_code = sd_ble_gap_disconnect(m_conn_handle,  BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
    		if (err_code != NRF_SUCCESS) return err_code;
    	}
    
    	// Stop advertising
    	err_code = sd_ble_gap_adv_stop(m_advertising.adv_handle);
    	if (err_code != NRF_SUCCESS) return err_code;
    
    	// Disable the radio tasks as scytulip suggested
    	// devzone.nordicsemi.com/.../
    	NRF_RADIO->TASKS_DISABLE;
    
    	return NRF_SUCCESS;
    }
    
    /////////////////////////////////////////////////////////////////////
    
    extern void Convert_to_ascii(uint16_t num,uint8_t *num_array,uint8_t n)
    {
    
        uint8_t _i; 	
    	_i = n;
         // _i = 0;
    	do{
    	_i-- ;			
    	num_array[_i] = (num % 10)+'0';
           	num /= 10 ; 
           // _i++;
    		
    	}while(_i != 0);
       
    }
    
    extern void  Convert_Ascii_array_to_int(uint8_t *ascii_array, uint8_t c)
    {
       uint16_t value=0;
       uint8_t i,hex;
       
       uint16_t mf = 1;
     i = c;
    	 do{ 
    	i--;	
    	hex = ascii_array[i]-'0';
    	value = value + hex*mf ; 
            mf = mf*10 ;
    	}while(i != 0);
    //return(value);  	
    Temp_value = value ;
    }
    
    
    void timer_handler(nrf_timer_event_t event_type, void* p_context)
    {
    
    }
    
    
    void saadc_sampling_event_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_drv_ppi_init();
        APP_ERROR_CHECK(err_code);
        
        nrf_drv_timer_config_t timer_config = NRF_DRV_TIMER_DEFAULT_CONFIG;
        timer_config.frequency = NRF_TIMER_FREQ_31250Hz;
        err_code = nrf_drv_timer_init(&m_timer, &timer_config, timer_handler);
        APP_ERROR_CHECK(err_code);
    
        /* setup m_timer for compare event */
        uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer,SAADC_SAMPLE_RATE);
        nrf_drv_timer_extended_compare(&m_timer, NRF_TIMER_CC_CHANNEL0, ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false);
        nrf_drv_timer_enable(&m_timer);
    
        uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer, NRF_TIMER_CC_CHANNEL0);
        uint32_t saadc_sample_event_addr = nrf_drv_saadc_sample_task_get();
    
        /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
        err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
        APP_ERROR_CHECK(err_code);
        
        err_code = nrf_drv_ppi_channel_assign(m_ppi_channel, timer_compare_event_addr, saadc_sample_event_addr);
        APP_ERROR_CHECK(err_code);
    }
    
    
    void saadc_sampling_event_enable(void)
    {
        ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
        APP_ERROR_CHECK(err_code);
    }
    
    
    void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
    {
        if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
        {
            ret_code_t err_code;
            uint16_t adc_value,mV;
            float  mV_value_digit;
            uint8_t value[SAADC_SAMPLES_IN_BUFFER*2];
            uint16_t bytes_to_send;
            uint8_t mV_values[20] = {"    ,    ,    ,     "};
            uint16_t send_bytes = 20;
         
            // set buffers
            err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAADC_SAMPLES_IN_BUFFER);
            APP_ERROR_CHECK(err_code);
    						
            // print samples on hardware UART and parse data for BLE transmission
           // printf("ADC event number: %d\r\n",(int)m_adc_evt_counter);
            for (int i = 0; i < SAADC_SAMPLES_IN_BUFFER; i++)
            {
               // printf("%d\r\n", p_event->data.done.p_buffer[i]);
    
                adc_value = p_event->data.done.p_buffer[i];
                if(adc_value > 4096)
                    adc_value = 0;
                mV_value_digit = adc_value ;
                switch(i)
                  {
                    case 0:              
                          mV_value_digit = mV_value_digit * 1.75 ;
                          Battery_voltage = mV_value_digit;
                          break;
                   case 1:
                          mV_value_digit = mV_value_digit * 0.88 ;
                          Battery_current = mV_value_digit;
                          break;
                   case 3:
                          mV_value_digit = mV_value_digit * 0.88 ;
                          FSR_voltage = mV_value_digit;
                          break;
                        
                  }
                  
               // mV_value_digit = mV_value_digit / 4096 ;
               // mV_value_digit = mV_value_digit/ 1000 ;
                 mV = mV_value_digit ;
                Convert_to_ascii(mV,(&mV_values[i*5]),4);
    
                value[i*2] = adc_value;
                value[(i*2)+1] = adc_value >> 8;
            }
    				
            // Send data over BLE via NUS service. Makes sure not to send more than 20 bytes.
            if((SAADC_SAMPLES_IN_BUFFER*2) <= 20) 
            {
                bytes_to_send = (SAADC_SAMPLES_IN_BUFFER*2);
            }
            else 
            {
                bytes_to_send = 20;
            }
           // err_code = ble_nus_data_send(&m_nus, value, &bytes_to_send, m_conn_handle);
         /* err_code = ble_nus_data_send(&m_nus, (&mV_values[0]), &send_bytes, m_conn_handle);
          if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_NOT_FOUND)) 
            {
                APP_ERROR_CHECK(err_code);
            }*/
    						
            m_adc_evt_counter++;
        }
    }
    
    
    void saadc_init(void)
    {
        ret_code_t err_code;
    	
        nrf_drv_saadc_config_t saadc_config = NRF_DRV_SAADC_DEFAULT_CONFIG;
        saadc_config.resolution = NRF_SAADC_RESOLUTION_12BIT;
    	
        nrf_saadc_channel_config_t channel_0_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN2);
        channel_0_config.gain = NRF_SAADC_GAIN1_6;
        channel_0_config.reference = NRF_SAADC_REFERENCE_INTERNAL;
    	
        nrf_saadc_channel_config_t channel_1_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN3);
        channel_1_config.gain = NRF_SAADC_GAIN1_6;
        channel_1_config.reference = NRF_SAADC_REFERENCE_INTERNAL;
    	
        nrf_saadc_channel_config_t channel_2_config =
         NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN4);
        channel_2_config.gain = NRF_SAADC_GAIN1_6;
        channel_2_config.reference = NRF_SAADC_REFERENCE_INTERNAL;
    	
        nrf_saadc_channel_config_t channel_3_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN5);
        channel_3_config.gain = NRF_SAADC_GAIN1_6;
        channel_3_config.reference = NRF_SAADC_REFERENCE_INTERNAL;				
    	
        err_code = nrf_drv_saadc_init(&saadc_config, saadc_callback);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(0, &channel_0_config);
        APP_ERROR_CHECK(err_code);
        err_code = nrf_drv_saadc_channel_init(1, &channel_1_config);
        APP_ERROR_CHECK(err_code);
        err_code = nrf_drv_saadc_channel_init(2, &channel_2_config);
        APP_ERROR_CHECK(err_code);
        err_code = nrf_drv_saadc_channel_init(3, &channel_3_config);
        APP_ERROR_CHECK(err_code);	
    
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAADC_SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);   
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAADC_SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);
    }
    /**
     * @brief Function for handling data from temperature sensor.
     *
     * @param[in] temp          Temperature in Celsius degrees read from sensor.
     */
    __STATIC_INLINE void data_handler(uint8_t temp)
    {
        //NRF_LOG_INFO("Temperature: %d Celsius degrees.", temp);
    }
    
    /**
     * @brief TWI events handler.
     */
    void twi_handler(nrf_drv_twi_evt_t const * p_event, void * p_context)
    {
        switch (p_event->type)
        {
            case NRF_DRV_TWI_EVT_DONE:
                if (p_event->xfer_desc.type == NRF_DRV_TWI_XFER_RX)
                {
                    data_handler(m_sample);
                }
                m_xfer_done = true;
                break;
            default:
                break;
        }
    }
    
    /**
     * @brief twi initialization.
     */
    void twi_init (void)
    {
        ret_code_t err_code;
    
        const nrf_drv_twi_config_t twi_ICM20948_config = {
           .scl                = ARDUINO_SCL_PIN,
           .sda                = ARDUINO_SDA_PIN,
           .frequency          = NRF_DRV_TWI_FREQ_100K,
           .interrupt_priority = APP_IRQ_PRIORITY_HIGH,
           .clear_bus_init     = false
        };
    
        err_code = nrf_drv_twi_init(&m_twi, &twi_ICM20948_config, twi_handler, NULL);
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_twi_enable(&m_twi);
    }
    
    
    
    static void application_timers_start(void)
    {
      uint32_t err_code;
        //uint32_t err_code = app_timer_start(m_timer_accel_update_id, TIMER_INTERVAL_ACCEL_UPDATE, NULL);
        //APP_ERROR_CHECK(err_code);
    
        err_code = app_timer_start(m_timer_adc_update_id, TIMER_INTERVAL_ACCEL_UPDATE, NULL);
        APP_ERROR_CHECK(err_code);
    
        
    
    
    }
    
    void Port_init(void)
    {
              nrf_gpio_cfg_output(BRD_LED1);
    	  nrf_gpio_cfg_output(BRD_LED2);
              nrf_gpio_cfg_output(BRD_LED3);
    	 // nrf_gpio_cfg_output(BRD_LED4);
            //  nrf_gpio_cfg_output(MOT_CTL); 
    	
    	/*  nrf_gpio_pin_set(BRD_LED1);
              nrf_gpio_pin_set(BRD_LED2);
              nrf_gpio_pin_set(BRD_LED3);
              nrf_gpio_pin_set(BRD_LED4);*/
            //  nrf_gpio_pin_clear(MOT_CTL); 
    
              nrf_gpio_cfg_input(BAT_STATE, BUTTON_PULL);
              nrf_gpio_cfg_input(KEY_PIN, BUTTON_PULL);
    
    }
    
    void ICM20948_set_mode(void)
    {
        ret_code_t err_code;
    
        /* Writing to LM75B_REG_CONF "0" set temperature sensor in NORMAL mode. */
        uint8_t reg[2] = {0x6, 00};
        err_code = nrf_drv_twi_tx(&m_twi, ICM20948_ADDR, reg, sizeof(reg), false);
        APP_ERROR_CHECK(err_code);
        while (m_xfer_done == false);
    
        /* Writing to pointer byte. */
      //  reg[0] = LM75B_REG_TEMP;
      //  m_xfer_done = false;
      //  err_code = nrf_drv_twi_tx(&m_twi, MPU_ADDR, reg, 1, false);
      //  APP_ERROR_CHECK(err_code);
      //  while (m_xfer_done == false);
    }
    
    uint32_t app_mpu_read_accel(accel_values_t * accel_values)
    {
        uint32_t err_code;
        uint8_t raw_values[6];
        uint8_t *data;
        uint8_t reg = 0x2D;
    
       // err_code = nrf_drv_mpu_read_registers(MPU_REG_ACCEL_XOUT_H, raw_values, 6);
       // if(err_code != NRF_SUCCESS) return err_code;
    
    
        err_code = nrf_drv_twi_tx(&m_twi, ICM20948_ADDR, &reg, 1, false);
       // APP_ERROR_CHECK(err_code);
        while (m_xfer_done == false);
    
         m_xfer_done = false;
         nrf_delay_ms(100);
    
         err_code = nrf_drv_twi_rx(&m_twi, ICM20948_ADDR,( &raw_values[0]), 7);
       
         memcpy(accel_values_array,raw_values,6);
        
       /* data = (uint8_t*)accel_values;
        for(uint8_t i = 0; i<6; i++)
        {
            *data = raw_values[5-i];
             accel_values_array[i] =  raw_values[i] ;
            data++;
        }*/
        return NRF_SUCCESS;
    }
    
    void pwm_init(void)
    {
      ret_code_t err_code;
    
      app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_1CH(1000L,MOT_CTL );
      pwm1_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH;
       /* Initialize and enable PWM. */
        err_code = app_pwm_init(&PWM1,&pwm1_cfg,pwm_ready_callback);
        APP_ERROR_CHECK(err_code);
        app_pwm_enable(&PWM1);
    
    }
    
    /**@brief Application main function.
     */
    
     
    
    
    int main(void)
    {
        APP_ERROR_CHECK(NRF_LOG_INIT(NULL));
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    
        //NRF_LOG_INFO("BSP example started.");
        //NRF_LOG_FLUSH();
        bool erase_bonds;
        bool pwm_on;
         uint16_t send_bytes= 4;
         uint8_t message[] = {"Hello"};
         uint8_t vib_cnt_buf[5];
         ret_code_t err_code;
          accel_values_t accel_values;
          Vibrate_value = 800;
          Vibrate_value2 = 80;
        
    
        // Initialize.
       // uart_init();
       // log_init();
        timers_init();
        buttons_leds_init(&erase_bonds);
        Port_init();
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
        peer_manager_init();
    
        saadc_sampling_event_init();
        saadc_init();
        saadc_sampling_event_enable();
    
        twi_init();
        nrf_gpio_pin_clear(BRD_LED3);
        nrf_gpio_pin_clear(BRD_LED1);
        pwm_init();
        application_timers_start();  
          advertising_start(erase_bonds);
     
        //  ICM20948_set_mode();
        
    nrf_cal_set_time(2020, 7, 20, 12, 30, 0);
    
    nrf_delay_ms(1000);
    
    
        // Enter main loop.
        for (;;)
        {
    
         if(button == 1) {
        uint32_t h = bluetooth_sleep();}
    
    //////////////////////////
    
    if(send_time_update)
            {
                char *time_string;
                uint16_t length;
                send_time_update = false;
                
                time_string = nrf_cal_get_time_string(true);
                length = strlen(time_string);
                uint32_t err_code = ble_nus_data_send(&m_nus, time_string, &length, m_conn_handle);
                APP_ERROR_CHECK(err_code);
            }
    
    //////////////
    
    
    
    if((FSR_voltage >= Vibrate_value) | (FSR_voltage < Vibrate_value2))
    {
    	if(vibrate_on  != 1)
    	{	
                vibrate_on = 1;
                nrf_delay_ms(1000);
               err_code = app_timer_start(m_timer_pwm_update_id, TIMER_INTERVAL_PWM_UPDATE, NULL);
               //APP_ERROR_CHECK(err_code);
               pwm_on = 1;
               
               app_pwm_enable(&PWM1);
                while (app_pwm_channel_duty_set(&PWM1, 0, dc) == NRF_ERROR_BUSY);
              if(FSR_voltage >= Vibrate_value)
               {
    
              
    
               if (kk==0)
                right++;
               else
               left++;
                }
                else if(FSR_voltage < Vibrate_value2)
                {
                  if (kk==0)
                  left++;
                  else
                  right++;
                }
              
             }
    }
    else
    {
       
    	if(vibrate_on  == 1)
    		{
                      vibrate_on  = 0 ;
                     app_pwm_disable(&PWM1);
                      err_code = app_timer_stop(m_timer_pwm_update_id);
                     }
    }
    
    
    
    
    
    if(vibrate_on  == 1)
    {
    if(start_pwm_update_flag == 1)
    {
      if(pwm_on == 1)
      {
         pwm_on = 0;
         app_pwm_disable(&PWM1);
    
      }
      else
      {
       pwm_on = 1;
                
    
     app_pwm_enable(&PWM1);
       while (app_pwm_channel_duty_set(&PWM1, 0, dc) == NRF_ERROR_BUSY);
    
      }
      start_pwm_update_flag = 0;
      }
    }
    
    
      if(start_adc_update_flag == true){
    
      if(nrf_gpio_pin_read(BAT_STATE)){
                nrf_gpio_pin_clear(BRD_LED3);
                charge = 0;
    
          if(Battery_voltage < 3300)
          {
          if(bat_low != 1)
            {
              bat_low = 1 ; 
              nrf_gpio_pin_set(BRD_LED1);
              }
            
          }
          else{
          if(bat_low == 1)
            {
              bat_low = 0 ; 
             nrf_gpio_pin_clear(BRD_LED1);
          }
          }
    
    
            }
            else{
               if(charge != 1){
                charge = 1;
                nrf_gpio_pin_clear(BRD_LED1);
                nrf_gpio_pin_set(BRD_LED3);
                
                }
    
            }
    
      
    
      start_adc_update_flag = false;
      }
    
        }
    }
    
    
    /**
     * @}
     */
    
    

  • Hi, can you please help me out with this error that i get

Related