This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts
This discussion has been locked.
You can no longer post new replies to this discussion. If you have a question you can start a new discussion

peripheral_uart, how to separate console and communication ?

Hi,

I work with win10 laptop, Toolchain  nrf Connect SDK 1.6.1 on a nrf5340dk.

I like to use the uart1 for the console (printk debugging) and the uart0 for communication.

In prj.conf I add "CONFIG_NRFX_UARTE1=y".

And in nrf5340_cpuapp_common.dts (in board folder) I change uart0 by uart1

" chosen {
        zephyr,console = &uart1;   //&uart0;
        zephyr,shell-uart = &uart0;
        zephyr,uart-mcumgr = &uart0;
        zephyr,bt-mon-uart = &uart0;
        zephyr,bt-c2h-uart = &uart0;
    }; "

But  nothing works, Leds are not blinking no more,

I can not see anymore the bluetooth module on the App nRF Connect,

and nothing on the serial terminal.

Could you help me please ?

Best Regards,

Rob.

  • Hi,

    In most cases I recommend using an overlay file instead of editing the board files.

    In the overlay file you should set the console to uart1, enable uart1, reconfigure the uart1 pins, and disable i2c1 as it conflicts with uart1:

    / {
        chosen {
            zephyr,console = &uart1;
        };
    };
    
    &uart1 {
        status = "okay";
        tx-pin = <35>;
    	rx-pin = <34>;
    };
    
    &i2c1 {
    	status = "disabled";
    };

    The default uart1 pins can not be used, as they are by default used by the network core.

  • Hi,

    Thank you for your answer.

    I try to make the modification on the prj.overlay file:

    8765.prj.overlay

    I add CONFIG_NRFX_UARTE1=y in the prj.conf file:

    8863.prj.conf

    and in the main.c file I make a function to use the uart:

    /*
     * Copyright (c) 2018 Nordic Semiconductor ASA
     *
     * SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
     */
    
    /** @file
     *  @brief Nordic UART Bridge Service (NUS) sample
     */
    
    #include <zephyr/types.h>
    #include <zephyr.h>
    #include <drivers/uart.h>
    
    #include <device.h>
    #include <soc.h>
    
    #include <bluetooth/bluetooth.h>
    #include <bluetooth/uuid.h>
    #include <bluetooth/gatt.h>
    #include <bluetooth/hci.h>
    
    #include <bluetooth/services/nus.h>
    
    #include <dk_buttons_and_leds.h>
    
    #include <settings/settings.h>
    
    #include <stdio.h>
    
    #include <logging/log.h>
    
    #define LOG_MODULE_NAME peripheral_uart
    LOG_MODULE_REGISTER(LOG_MODULE_NAME);
    
    #define STACKSIZE CONFIG_BT_NUS_THREAD_STACK_SIZE
    #define PRIORITY 7
    
    #define DEVICE_NAME CONFIG_BT_DEVICE_NAME
    #define DEVICE_NAME_LEN	(sizeof(DEVICE_NAME) - 1)
    
    #define RUN_STATUS_LED DK_LED1
    #define RUN_LED_BLINK_INTERVAL 1000
    
    #define CON_STATUS_LED DK_LED2
    
    #define KEY_PASSKEY_ACCEPT DK_BTN1_MSK
    #define KEY_PASSKEY_REJECT DK_BTN2_MSK
    
    #define UART_BUF_SIZE CONFIG_BT_NUS_UART_BUFFER_SIZE
    #define UART_WAIT_FOR_BUF_DELAY K_MSEC(50)
    #define UART_WAIT_FOR_RX CONFIG_BT_NUS_UART_RX_WAIT_TIME
    
    static K_SEM_DEFINE(ble_init_ok, 0, 1);
    
    static struct bt_conn *current_conn;
    static struct bt_conn *auth_conn;
    
    static const struct device *uart;
    static struct k_work_delayable uart_work;
    
    struct uart_data_t {
    	void *fifo_reserved;
    	uint8_t data[UART_BUF_SIZE];
    	uint16_t len;
    };
    
    static K_FIFO_DEFINE(fifo_uart_tx_data);
    static K_FIFO_DEFINE(fifo_uart_rx_data);
    
    static const struct bt_data ad[] = {
    	BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
    	BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
    };
    
    static const struct bt_data sd[] = {
    	BT_DATA_BYTES(BT_DATA_UUID128_ALL, BT_UUID_NUS_VAL),
    };
    
    static uint8_t test[5] = {0x30,0x31,0x32,0x33,0x34};		//Rob08102021
    
    static void uart_cb(const struct device *dev, struct uart_event *evt, void *user_data)
    {
    	ARG_UNUSED(dev);
    
    	static uint8_t *current_buf;
    	static size_t aborted_len;
    	static bool buf_release;
    	struct uart_data_t *buf;
    	static uint8_t *aborted_buf;
    
    	switch (evt->type) {
    	case UART_TX_DONE:
    		if ((evt->data.tx.len == 0) ||
    		    (!evt->data.tx.buf)) {
    			return;
    		}
    
    		if (aborted_buf) {
    			buf = CONTAINER_OF(aborted_buf, struct uart_data_t,
    					   data);
    			aborted_buf = NULL;
    			aborted_len = 0;
    		} else {
    			buf = CONTAINER_OF(evt->data.tx.buf, struct uart_data_t,
    					   data);
    		}
    
    		k_free(buf);
    
    		buf = k_fifo_get(&fifo_uart_tx_data, K_NO_WAIT);
    		if (!buf) {
    			return;
    		}
    
    		if (uart_tx(uart, buf->data, buf->len, SYS_FOREVER_MS)) {
    			LOG_WRN("Failed to send data over UART");
    		}
    
    		break;
    
    	case UART_RX_RDY:
    		buf = CONTAINER_OF(evt->data.rx.buf, struct uart_data_t, data);
    		buf->len += evt->data.rx.len;
    		buf_release = false;
    
    		if (buf->len == UART_BUF_SIZE) {
    			k_fifo_put(&fifo_uart_rx_data, buf);
    		} else if ((evt->data.rx.buf[buf->len - 1] == '\n') ||
    			  (evt->data.rx.buf[buf->len - 1] == '\r')) {
    			k_fifo_put(&fifo_uart_rx_data, buf);
    			current_buf = evt->data.rx.buf;
    			buf_release = true;
    			uart_rx_disable(uart);
    		}
    
    		break;
    
    	case UART_RX_DISABLED:
    		buf = k_malloc(sizeof(*buf));
    		if (buf) {
    			buf->len = 0;
    		} else {
    			LOG_WRN("Not able to allocate UART receive buffer");
    			k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
    			return;
    		}
    
    		uart_rx_enable(uart, buf->data, sizeof(buf->data),
    			       UART_WAIT_FOR_RX);
    
    		break;
    
    	case UART_RX_BUF_REQUEST:
    		buf = k_malloc(sizeof(*buf));
    		if (buf) {
    			buf->len = 0;
    			uart_rx_buf_rsp(uart, buf->data, sizeof(buf->data));
    		} else {
    			LOG_WRN("Not able to allocate UART receive buffer");
    		}
    
    		break;
    
    	case UART_RX_BUF_RELEASED:
    		buf = CONTAINER_OF(evt->data.rx_buf.buf, struct uart_data_t,
    				   data);
    		if (buf_release && (current_buf != evt->data.rx_buf.buf)) {
    			k_free(buf);
    			buf_release = false;
    			current_buf = NULL;
    		}
    
    		break;
    
    	case UART_TX_ABORTED:
    			if (!aborted_buf) {
    				aborted_buf = (uint8_t *)evt->data.tx.buf;
    			}
    
    			aborted_len += evt->data.tx.len;
    			buf = CONTAINER_OF(aborted_buf, struct uart_data_t,
    					   data);
    
    			uart_tx(uart, &buf->data[aborted_len],
    				buf->len - aborted_len, SYS_FOREVER_MS);
    
    		break;
    
    	default:
    		break;
    	}
    }
    
    static void uart_work_handler(struct k_work *item)
    {
    	struct uart_data_t *buf;
    
    	buf = k_malloc(sizeof(*buf));
    	if (buf) {
    		buf->len = 0;
    	} else {
    		LOG_WRN("Not able to allocate UART receive buffer");
    		k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
    		return;
    	}
    
    	uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_WAIT_FOR_RX);
    }
    
    static int uart_init(void)
    {
    	int err;
    	struct uart_data_t *rx;
    
    	uart = device_get_binding(DT_LABEL(DT_NODELABEL(uart0)));
            //uart = device_get_binding(DT_LABEL(DT_NODELABEL(uart1)));					//Rob08102021
    	if (!uart) {
    		return -ENXIO;
    	}
    
    	rx = k_malloc(sizeof(*rx));
    	if (rx) {
    		rx->len = 0;
    	} else {
    		return -ENOMEM;
    	}
    
    	k_work_init_delayable(&uart_work, uart_work_handler);
    
    	err = uart_callback_set(uart, uart_cb, NULL);
    	if (err) {
    		return err;
    	}
    
    	return uart_rx_enable(uart, rx->data, sizeof(rx->data), 50);
    }
    
    static void connected(struct bt_conn *conn, uint8_t err)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	if (err) {
    		LOG_ERR("Connection failed (err %u)", err);
    		return;
    	}
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    	LOG_INF("Connected %s", log_strdup(addr));
    
    	current_conn = bt_conn_ref(conn);
    
    	dk_set_led_on(CON_STATUS_LED);
    }
    
    static void disconnected(struct bt_conn *conn, uint8_t reason)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	LOG_INF("Disconnected: %s (reason %u)", log_strdup(addr), reason);
    
    	if (auth_conn) {
    		bt_conn_unref(auth_conn);
    		auth_conn = NULL;
    	}
    
    	if (current_conn) {
    		bt_conn_unref(current_conn);
    		current_conn = NULL;
    		dk_set_led_off(CON_STATUS_LED);
    	}
    }
    
    #ifdef CONFIG_BT_NUS_SECURITY_ENABLED
    static void security_changed(struct bt_conn *conn, bt_security_t level,
    			     enum bt_security_err err)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	if (!err) {
    		LOG_INF("Security changed: %s level %u", log_strdup(addr),
    			level);
    	} else {
    		LOG_WRN("Security failed: %s level %u err %d", log_strdup(addr),
    			level, err);
    	}
    }
    #endif
    
    static struct bt_conn_cb conn_callbacks = {
    	.connected    = connected,
    	.disconnected = disconnected,
    #ifdef CONFIG_BT_NUS_SECURITY_ENABLED
    	.security_changed = security_changed,
    #endif
    };
    
    #if defined(CONFIG_BT_NUS_SECURITY_ENABLED)
    static void auth_passkey_display(struct bt_conn *conn, unsigned int passkey)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	LOG_INF("Passkey for %s: %06u", log_strdup(addr), passkey);
    }
    
    static void auth_passkey_confirm(struct bt_conn *conn, unsigned int passkey)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	auth_conn = bt_conn_ref(conn);
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	LOG_INF("Passkey for %s: %06u", log_strdup(addr), passkey);
    	LOG_INF("Press Button 1 to confirm, Button 2 to reject.");
    }
    
    
    static void auth_cancel(struct bt_conn *conn)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	LOG_INF("Pairing cancelled: %s", log_strdup(addr));
    }
    
    
    static void pairing_confirm(struct bt_conn *conn)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	bt_conn_auth_pairing_confirm(conn);
    
    	LOG_INF("Pairing confirmed: %s", log_strdup(addr));
    }
    
    
    static void pairing_complete(struct bt_conn *conn, bool bonded)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	LOG_INF("Pairing completed: %s, bonded: %d", log_strdup(addr),
    		bonded);
    }
    
    
    static void pairing_failed(struct bt_conn *conn, enum bt_security_err reason)
    {
    	char addr[BT_ADDR_LE_STR_LEN];
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
    
    	LOG_INF("Pairing failed conn: %s, reason %d", log_strdup(addr),
    		reason);
    }
    
    
    static struct bt_conn_auth_cb conn_auth_callbacks = {
    	.passkey_display = auth_passkey_display,
    	.passkey_confirm = auth_passkey_confirm,
    	.cancel = auth_cancel,
    	.pairing_confirm = pairing_confirm,
    	.pairing_complete = pairing_complete,
    	.pairing_failed = pairing_failed
    };
    #else
    static struct bt_conn_auth_cb conn_auth_callbacks;
    #endif
    
    static void bt_receive_cb(struct bt_conn *conn, const uint8_t *const data,
    			  uint16_t len)
    {
    	int err;
    	char addr[BT_ADDR_LE_STR_LEN] = {0};
    
    	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, ARRAY_SIZE(addr));
    
    	LOG_INF("Received data from: %s", log_strdup(addr));
    
    	for (uint16_t pos = 0; pos != len;) {
    		struct uart_data_t *tx = k_malloc(sizeof(*tx));
    
    		if (!tx) {
    			LOG_WRN("Not able to allocate UART send data buffer");
    			return;
    		}
    
    		/* Keep the last byte of TX buffer for potential LF char. */
    		size_t tx_data_size = sizeof(tx->data) - 1;
    
    		if ((len - pos) > tx_data_size) {
    			tx->len = tx_data_size;
    		} else {
    			tx->len = (len - pos);
    		}
    
    		memcpy(tx->data, &data[pos], tx->len);
    
    		pos += tx->len;
    
    		/* Append the LF character when the CR character triggered
    		 * transmission from the peer.
    		 */
    		if ((pos == len) && (data[len - 1] == '\r')) {
    			tx->data[tx->len] = '\n';
    			tx->len++;
    		}
    
    		err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
    		if (err) {
    			k_fifo_put(&fifo_uart_tx_data, tx);
    		}
    	}
    }
    
    static struct bt_nus_cb nus_cb = {
    	.received = bt_receive_cb,
    };
    
    void error(void)
    {
    	dk_set_leds_state(DK_ALL_LEDS_MSK, DK_NO_LEDS_MSK);
    
    	while (true) {
    		/* Spin for ever */
    		k_sleep(K_MSEC(1000));
    	}
    }
    
    static void num_comp_reply(bool accept)
    {
    	if (accept) {
    		bt_conn_auth_passkey_confirm(auth_conn);
    		LOG_INF("Numeric Match, conn %p", (void *)auth_conn);
    	} else {
    		bt_conn_auth_cancel(auth_conn);
    		LOG_INF("Numeric Reject, conn %p", (void *)auth_conn);
    	}
    
    	bt_conn_unref(auth_conn);
    	auth_conn = NULL;
    }
    
    void button_changed(uint32_t button_state, uint32_t has_changed)
    {
    	uint32_t buttons = button_state & has_changed;
    
    	if (auth_conn) {
    		if (buttons & KEY_PASSKEY_ACCEPT) {
    			num_comp_reply(true);
    		}
    
    		if (buttons & KEY_PASSKEY_REJECT) {
    			num_comp_reply(false);
    		}
    	}
    }
    
    static void configure_gpio(void)
    {
    	int err;
    
    	err = dk_buttons_init(button_changed);
    	if (err) {
    		LOG_ERR("Cannot init buttons (err: %d)", err);
    	}
    
    	err = dk_leds_init();
    	if (err) {
    		LOG_ERR("Cannot init LEDs (err: %d)", err);
    	}
    }
    
    //---------------------------------------------------------------- //Rob08102021
    
    int uart_send (const uint8_t *data, size_t len, int32_t timeout)
    {
          struct uart_data_t *buf;
          int err = -1;
                
          if (len > 0)
          {
              buf = k_malloc(sizeof(*buf));
              if (buf) {
                      memcpy(buf->data, data, len);
                      err = uart_tx (uart, buf->data, len, timeout);
            
              } else {
                      //printk("PB fonction send\n");
                  
              }
          
    
          }
    
          return err;
    }
    //--------------------------------------------------------------
    
    void main(void)
    {
    	int blink_status = 0;
    	int err = 0;
    
    	configure_gpio();
    
    	err = uart_init();
    	if (err) {
    		error();
    	}
    
    	bt_conn_cb_register(&conn_callbacks);
    
    	if (IS_ENABLED(CONFIG_BT_NUS_SECURITY_ENABLED)) {
    		bt_conn_auth_cb_register(&conn_auth_callbacks);
    	}
    
    	err = bt_enable(NULL);
    	if (err) {
    		error();
    	}
    
    	LOG_INF("Bluetooth initialized");
    
    	k_sem_give(&ble_init_ok);
    
    	if (IS_ENABLED(CONFIG_SETTINGS)) {
    		settings_load();
    	}
    
    	err = bt_nus_init(&nus_cb);
    	if (err) {
    		LOG_ERR("Failed to initialize UART service (err: %d)", err);
    		return;
    	}
    
    	err = bt_le_adv_start(BT_LE_ADV_CONN, ad, ARRAY_SIZE(ad), sd,
    			      ARRAY_SIZE(sd));
    	if (err) {
    		LOG_ERR("Advertising failed to start (err %d)", err);
    	}
    
    	printk("Starting Nordic UART service example\n");
    
    	for (;;) {
    		dk_set_led(RUN_STATUS_LED, (++blink_status) % 2);
    		k_sleep(K_MSEC(RUN_LED_BLINK_INTERVAL));
    		
    		printk(" service\n");			//Rob22092021           
                    uart_send ( test, 0x05, SYS_FOREVER_MS);      //Rob08102021 OK
    
    	}
    }
    
    void ble_write_thread(void)
    {
    	/* Don't go any further until BLE is initialized */
    	k_sem_take(&ble_init_ok, K_FOREVER);
    
    	for (;;) {
    		/* Wait indefinitely for data to be sent over bluetooth */
    		struct uart_data_t *buf = k_fifo_get(&fifo_uart_rx_data,
    						     K_FOREVER);
    
    		if (bt_nus_send(NULL, buf->data, buf->len)) {
    			LOG_WRN("Failed to send data over BLE connection");
    		}
    
    		k_free(buf);
    	}
    }
    
    K_THREAD_DEFINE(ble_write_thread_id, STACKSIZE, ble_write_thread, NULL, NULL,
    		NULL, PRIORITY, 0, 0);
    

    I would like to send to the uart "01234" and send to the uart1 the printk "service",

    but I send on the uart 0 "service" and "01234".

    What should be done to separate sending of the Tx on uart0 and the printk on uart1 ?

    Best Regards,

    Rob

  • Call the overlay file nrf5340dk_nrf5340_cpuapp.overlay, not prj.overlay.

    Let me know how that changes the behavior.

    You can also try changing the log configs at the bottom of your prj.conf:

    CONFIG_USE_SEGGER_RTT=n
    CONFIG_LOG_BACKEND_RTT=n
    CONFIG_LOG_BACKEND_UART=y

  • Thank you !

    Now it's work, but I can read an error:

    <wrn> bt_ecc: ECC HCI commands not available

  • You can ignore that warning, that is as expected.

Related