want to achieve 1-2 Mbps through BLE.

I am working on project in which i want to read data from sd card and send it to mobile through BLE , I am using ble_nus_send to send data but when i decrease the delay then its giving me error 19 and when i increase delay then it is running smoothly .

Can i achieve something between 1-2 Mbps through ble_nus_Send or have to do with some other approach . 

  • Hello,

    ble_nus_send to send data but when i decrease the delay then its giving me error 19 and when i increase delay then it is running smoothly .

    Exactly which function is returning error 19?

    Can i achieve something between 1-2 Mbps through ble_nus_Send or have to do with some other approach . 

    Please see the SoftDevice throughput documentation for what parameters to use to achieve the highest throughputs.

    Best regards,
    Karl

  • ble_nus_data_send giving me error 19 . 

    Please have a look at my code , I am using ble_hrs_c code . /** * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** * @brief BLE Heart Rate Collector application main file. * * This file contains the source code for a sample heart rate collector. */ #include #include #include #include #include "bsp.h" #include "diskio_blkdev.h" #include "ff.h" #include "nrf.h" #include "nrf_block_dev_sdc.h" #include "nrf_delay.h" #include "nrf_drv_gpiote.h" #include "nrf_drv_timer.h" #include "app_uart.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "ble_nus.h" #include "nrf_ble_qwr.h" #include "app_error.h" #include "app_timer.h" #include "app_util.h" #include "ble.h" #include "ble_bas_c.h" #include "ble_conn_state.h" #include "ble_db_discovery.h" #include "ble_hci.h" #include "ble_hrs_c.h" #include "ble_srv_common.h" #include "bsp_btn_ble.h" #include "fds.h" #include "nordic_common.h" #include "nrf_ble_gatt.h" #include "nrf_ble_lesc.h" #include "nrf_ble_scan.h" #include "nrf_fstorage.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_pwr_mgmt.h" #include "nrf_sdh.h" #include "nrf_sdh_ble.h" #include "nrf_sdh_soc.h" #include "nrf_sdm.h" #include "peer_manager.h" #include "peer_manager_handler.h" #if defined(UART_PRESENT) #include "nrf_uart.h" #endif #if defined(UARTE_PRESENT) #include "nrf_uarte.h" #endif #define FILE_NAME "hr.CSV" #define TEST_STRING "SD card example." #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN #ifdef BSP_BUTTON_0 #define PIN_IN BSP_BUTTON_0 #endif #ifndef PIN_IN #error "Please indicate input pin" #endif #ifdef BSP_LED_1 #define PIN_OUT BSP_LED_1 #endif #ifndef PIN_OUT #error "Please indicate output pin" #endif /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); BLE_NUS_DEF(m_nus, 6); NRF_BLE_QWRS_DEF(m_qwr, 6); static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 18000 volatile uint8_t button_pressed = 0; volatile int timer_call = 0; FRESULT ff_result; static FIL file; uint16_t heart_rate; char s_heartrate[4]; volatile uint8_t c; uint32_t bytes_written; const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(1); #define SDC_SCK_PIN ARDUINO_13_PIN ///< SDC serial clock (SCK) pin. #define SDC_MOSI_PIN ARDUINO_11_PIN ///< SDC serial data in (DI) pin. #define SDC_MISO_PIN ARDUINO_12_PIN ///< SDC serial data out (DO) pin. #define SDC_CS_PIN ARDUINO_10_PIN ///< SDC chip select (CS) pin. #define MIN_CONN_INTERVAL (uint16_t)(MSEC_TO_UNITS(15, UNIT_1_25_MS)) #define MAX_CONN_INTERVAL (uint16_t)(MSEC_TO_UNITS(15, UNIT_1_25_MS)) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 #define DEVICE_NAME "nRF Relay" static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_SOC_OBSERVER_PRIO 1 /**< Applications' SoC observer priority. You shouldn't need to modify this value. */ #define LESC_DEBUG_MODE 0 /**< Set to 1 to use LESC debug keys, allows you to use a sniffer to inspect traffic. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 1 /**< LE Secure Connections enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size in octets. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size in octets. */ #define SCAN_DURATION_WITELIST 3000 /**< Duration of the scanning in units of 10 milliseconds. */ #define HART_RATE_SERVICE_UUID_IDX 0 #define TARGET_UUID BLE_UUID_HEART_RATE_SERVICE /**< Target device uuid that application is looking for. */ static uint16_t m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID; /**< Connection handle for the HRS central application */ static uint16_t m_conn_handle_rscs_c = BLE_CONN_HANDLE_INVALID; char init[] = "Long,Lat,Alt,Accelx,Accely,Accelz,GYROx,GYROy,GYROz,Magx,Magy,Magz,Heartrate,Bat % "; char data[] = "2221"; /**@brief Macro to unpack 16bit unsigned UUID from octet stream. */ #define UUID16_EXTRACT(DST, SRC) \ do { \ (*(DST)) = (SRC)[1]; \ (*(DST)) <<= 8; \ (*(DST)) |= (SRC)[0]; \ } while (0) NRF_BLE_GQ_DEF(m_ble_gatt_queue, /**< BLE GATT Queue instance. */ NRF_SDH_BLE_CENTRAL_LINK_COUNT, NRF_BLE_GQ_QUEUE_SIZE); BLE_HRS_C_DEF(m_hrs_c); /**< Structure used to identify the heart rate client module. */ BLE_BAS_C_DEF(m_bas_c); /**< Structure used to identify the Battery Service client module. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ BLE_DB_DISCOVERY_ARRAY_DEF(m_db_disc, 2); /**< Database discovery module instances. */ NRF_BLE_SCAN_DEF(m_scan); /**< DB discovery module instance. */ /**< Scanning module instance. */ static uint16_t m_conn_handle; /**< Current connection handle. */ static bool m_whitelist_disabled; /**< True if whitelist has been temporarily disabled. */ static bool m_memory_access_in_progress; /**< Flag to keep track of ongoing operations on persistent memory. */ void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { c = 1; } NRF_BLOCK_DEV_SDC_DEFINE( m_block_dev_sdc, NRF_BLOCK_DEV_SDC_CONFIG( SDC_SECTOR_SIZE, APP_SDCARD_CONFIG(SDC_MOSI_PIN, SDC_MISO_PIN, SDC_SCK_PIN, SDC_CS_PIN)), NFR_BLOCK_DEV_INFO_CONFIG("Nordic", "SDC", "1.00")); void timer_led_event_handler(nrf_timer_event_t event_type, void *p_context) { switch (event_type) { case NRF_TIMER_EVENT_COMPARE0: timer_call = 1; break; default: //Do nothing. break; } } static void fatfs_example() { static FATFS fs; static DIR dir; static FILINFO fno; DSTATUS disk_state = STA_NOINIT; // Initialize FATFS disk I/O interface by providing the block device. static diskio_blkdev_t drives[] = { DISKIO_BLOCKDEV_CONFIG(NRF_BLOCKDEV_BASE_ADDR(m_block_dev_sdc, block_dev), NULL)}; diskio_blockdev_register(drives, ARRAY_SIZE(drives)); NRF_LOG_INFO("Initializing disk 0 (SDC)..."); for (uint32_t retries = 3; retries && disk_state; --retries) { disk_state = disk_initialize(0); } if (disk_state) { NRF_LOG_INFO("Disk initialization failed."); return; } uint32_t blocks_per_mb = (1024uL * 1024uL) / m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_size; uint32_t capacity = m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_count / blocks_per_mb; NRF_LOG_INFO("Capacity: %d MB", capacity); NRF_LOG_INFO("Mounting volume..."); ff_result = f_mount(&fs, "", 1); if (ff_result) { NRF_LOG_INFO("Mount failed."); return; } NRF_LOG_INFO("\r\n Listing directory: /"); ff_result = f_opendir(&dir, "/"); if (ff_result) { NRF_LOG_INFO("Directory listing failed!"); return; } do { ff_result = f_readdir(&dir, &fno); if (ff_result != FR_OK) { NRF_LOG_INFO("Directory read failed."); return; } if (fno.fname[0]) { if (fno.fattrib & AM_DIR) { NRF_LOG_RAW_INFO(" %s", (uint32_t)fno.fname); } else { NRF_LOG_RAW_INFO("%9lu %s", fno.fsize, (uint32_t)fno.fname); } } } while (fno.fname[0]); NRF_LOG_RAW_INFO(""); uint8_t string[15]; NRF_LOG_INFO(string); NRF_LOG_INFO("Writing to file " FILE_NAME "..."); ff_result = f_open(&file, FILE_NAME, FA_READ); if (ff_result != FR_OK) { NRF_LOG_INFO("Unable to open or create file: " FILE_NAME "."); return; } uint16_t size; size = f_size(&file); char *data = NULL; data = malloc(size); /* allocate memory to store image data */ NRF_LOG_INFO("File size: %d bytes", size); int b = 86; for (int a = 85; a < size; a = a + 85) { //NRF_LOG_INFO("%d \n",a); //NRF_LOG_INFO("%d \n",b); f_lseek(&file, b); ff_result = f_read(&file, string, 85, (UINT *)&bytes_written); if (ff_result != FR_OK) { NRF_LOG_INFO("read failed\r\n."); } else { // NRF_LOG_INFO("%d bytes read.", bytes_written); } //for(int i=0;i<bytes_written;i++) //{ // NRF_LOG_INFO("%d -> %c",i,string[i]); //nrf_delay_ms(20); //} b = b + 85; } NRF_LOG_INFO("done"); (void)f_close(&file); //ff_result = f_write(&file, string, sizeof(string), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //(void) f_close(&file); //for(int a=1 ; a<=600 ; a++) //{ //for (int b=1 ;b<=14;b++) //{ //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //ff_result = f_write(&file, ",",1,&bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //nrf_delay_ms(60); //} } /**< Scan parameters requested for scanning and connection. */ static ble_gap_scan_params_t const m_scan_param = { .active = 0x01, #if (NRF_SD_BLE_API_VERSION > 7) .interval_us = NRF_BLE_SCAN_SCAN_INTERVAL * UNIT_0_625_MS, .window_us = NRF_BLE_SCAN_SCAN_WINDOW * UNIT_0_625_MS, #else .interval = NRF_BLE_SCAN_SCAN_INTERVAL, .window = NRF_BLE_SCAN_SCAN_WINDOW, #endif .filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL, .timeout = SCAN_DURATION_WITELIST, .scan_phys = BLE_GAP_PHY_1MBPS, .extended = true, }; /**@brief Names which the central applications will scan for, and which will be advertised by the peripherals. * if these are set to empty strings, the UUIDs defined below will be used */ static char const m_target_periph_name[] = ""; /**< If you want to connect to a peripheral using a given advertising name, type its name here. */ static bool is_connect_per_addr = true; /**< If you want to connect to a peripheral with a given address, set this to true and put the correct address in the variable below. */ static ble_gap_addr_t const m_target_periph_addr = { /* Possible values for addr_type: BLE_GAP_ADDR_TYPE_PUBLIC, BLE_GAP_ADDR_TYPE_RANDOM_STATIC, BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE, BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE. */ .addr_type = BLE_GAP_ADDR_TYPE_RANDOM_STATIC, .addr = {0x8D, 0xFE, 0x23, 0x86, 0x77, 0xD9}}; static void scan_start(void); /**@brief Function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t *p_file_name) { app_error_handler(0xDEADBEEF, line_num, p_file_name); } /**@brief Function for handling the Heart Rate Service Client and Battery Service Client errors. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void service_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling database discovery events. * * @details This function is callback function to handle events from the database discovery module. * Depending on the UUIDs that are discovered, this function should forward the events * to their respective services. * * @param[in] p_event Pointer to the database discovery event. */ static void db_disc_handler(ble_db_discovery_evt_t *p_evt) { ble_hrs_on_db_disc_evt(&m_hrs_c, p_evt); ble_bas_on_db_disc_evt(&m_bas_c, p_evt); } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void adv_scan_start(void) { ret_code_t err_code; //check if there are no flash operations in progress if (!nrf_fstorage_is_busy(NULL)) { // Start scanning for peripherals and initiate connection to devices which // advertise Heart Rate or Running speed and cadence UUIDs. scan_start(); // Turn on the LED to signal scanning. bsp_board_led_on(BSP_BOARD_LED_0); // Start advertising. err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } } static void pm_evt_handler(pm_evt_t const *p_evt) { pm_handler_on_pm_evt(p_evt); pm_handler_disconnect_on_sec_failure(p_evt); pm_handler_flash_clean(p_evt); switch (p_evt->evt_id) { case PM_EVT_PEERS_DELETE_SUCCEEDED: // Bonds are deleted. Start scanning. adv_scan_start(); break; default: break; } } /** * @brief Function for shutdown events. * * @param[in] event Shutdown type. */ static bool shutdown_handler(nrf_pwr_mgmt_evt_t event) { ret_code_t err_code; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); switch (event) { case NRF_PWR_MGMT_EVT_PREPARE_WAKEUP: // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); break; default: break; } return true; } NRF_PWR_MGMT_HANDLER_REGISTER(shutdown_handler, APP_SHUTDOWN_HANDLER_PRIORITY); /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void multi_qwr_conn_handle_assign(uint16_t conn_handle) { for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) { if (m_qwr[i].conn_handle == BLE_CONN_HANDLE_INVALID) { ret_code_t err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr[i], conn_handle); APP_ERROR_CHECK(err_code); break; } } } volatile uint8_t peristat=0; static void on_ble_peripheral_evt(ble_evt_t const *p_ble_evt) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("peripheral Connected"); nrf_delay_ms(20); peristat=1; err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; multi_qwr_conn_handle_assign(p_ble_evt->evt.gap_evt.conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); peristat=0; // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } static void on_ble_central_evt(ble_evt_t const *p_ble_evt) { ret_code_t err_code; ble_gap_evt_t const *p_gap_evt = &p_ble_evt->evt.gap_evt; switch (p_ble_evt->header.evt_id) { // Upon connection, check which peripheral is connected (HR or RSC), initiate DB // discovery, update LEDs status, and resume scanning, if necessary. case BLE_GAP_EVT_CONNECTED: { NRF_LOG_INFO("Central connected"); // If no Heart Rate sensor or RSC sensor is currently connected, try to find them on this peripheral. if ((m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID)) { NRF_LOG_INFO("Attempt to find HRS or RSC on conn_handle 0x%x", p_gap_evt->conn_handle); err_code = ble_db_discovery_start(&m_db_disc[0], p_gap_evt->conn_handle); if (err_code == NRF_ERROR_BUSY) { err_code = ble_db_discovery_start(&m_db_disc[1], p_gap_evt->conn_handle); APP_ERROR_CHECK(err_code); } else { APP_ERROR_CHECK(err_code); } } // Assign connection handle to the QWR module. multi_qwr_conn_handle_assign(p_gap_evt->conn_handle); // Update LEDs status, and check whether to look for more peripherals to connect to. bsp_board_led_on(BSP_BOARD_LED_1); if (ble_conn_state_central_conn_count() == NRF_SDH_BLE_CENTRAL_LINK_COUNT) { bsp_board_led_off(BSP_BOARD_LED_0); } else { // Resume scanning. bsp_board_led_on(BSP_BOARD_LED_0); scan_start(); } } break; // BLE_GAP_EVT_CONNECTED // Upon disconnection, reset the connection handle of the peer that disconnected, // update the LEDs status and start scanning again. case BLE_GAP_EVT_DISCONNECTED: { if (p_gap_evt->conn_handle == m_conn_handle_hrs_c) { NRF_LOG_INFO("HRS central disconnected (reason: %d)", p_gap_evt->params.disconnected.reason); m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID; err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &m_adv_uuids[HART_RATE_SERVICE_UUID_IDX]); APP_ERROR_CHECK(err_code); } if ((m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID)) { // Start scanning. scan_start(); // Update LEDs status. bsp_board_led_on(BSP_BOARD_LED_0); } if (ble_conn_state_central_conn_count() == 0) { bsp_board_led_off(BSP_BOARD_LED_1); } } break; // BLE_GAP_EVT_DISCONNECTED case BLE_GAP_EVT_TIMEOUT: { // No timeout for scanning is specified, so only connection attemps can timeout. if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN) { NRF_LOG_INFO("Connection Request timed out."); } } break; case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST: { // Accept parameters requested by peer. err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle, &p_gap_evt->params.conn_param_update_request.conn_params); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for handling BLE events from peripheral applications. * @details Updates the status LEDs used to report the activity of the peripheral applications. * * @param[in] p_ble_evt Bluetooth stack event. */ static bool ble_evt_is_advertising_timeout(ble_evt_t const *p_ble_evt) { return (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_SET_TERMINATED); } static void ble_evt_handler(ble_evt_t const *p_ble_evt, void *p_context) { uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle; uint16_t role = ble_conn_state_role(conn_handle); // Based on the role this device plays in the connection, dispatch to the right handler. if (role == BLE_GAP_ROLE_PERIPH || ble_evt_is_advertising_timeout(p_ble_evt)) { //ble_hrs_on_ble_evt(p_ble_evt, &m_hrs); ble_nus_on_ble_evt(p_ble_evt, &m_nus); on_ble_peripheral_evt(p_ble_evt); } else if ((role == BLE_GAP_ROLE_CENTRAL) || (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_REPORT)) { ble_hrs_c_on_ble_evt(p_ble_evt, &m_hrs_c); //ble_nus_on_ble_evt(p_ble_evt,&m_nus); on_ble_central_evt(p_ble_evt); } } /**@brief SoftDevice SoC event handler. * * @param[in] evt_id SoC event. * @param[in] p_context Context. */ static void soc_evt_handler(uint32_t evt_id, void *p_context) { switch (evt_id) { case NRF_EVT_FLASH_OPERATION_SUCCESS: /* fall through */ case NRF_EVT_FLASH_OPERATION_ERROR: if (m_memory_access_in_progress) { m_memory_access_in_progress = false; scan_start(); } break; default: // No implementation needed. break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); NRF_LOG_INFO("%d", err_code); APP_ERROR_CHECK(err_code); // Register handlers for BLE and SoC events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); NRF_SDH_SOC_OBSERVER(m_soc_observer, APP_SOC_OBSERVER_PRIO, soc_evt_handler, NULL); } /**@brief Function for the Peer Manager initialization. */ static void peer_manager_init(void) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /** @brief Clear bonding information from persistent storage */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for disabling the use of whitelist for scanning. */ static void whitelist_disable(void) { if (!m_whitelist_disabled) { NRF_LOG_INFO("Whitelist temporarily disabled."); m_whitelist_disabled = true; nrf_ble_scan_stop(); scan_start(); } } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { ret_code_t err_code; switch (event) { case BSP_EVENT_SLEEP: nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: whitelist_disable(); break; default: break; } } /**@brief Heart Rate Collector Handler. */ static void hrs_c_evt_handler(ble_hrs_c_t *p_hrs_c, ble_hrs_c_evt_t *p_hrs_c_evt) { NRF_LOG_INFO("hrs_c_evt_handler"); ret_code_t err_code; switch (p_hrs_c_evt->evt_type) { case BLE_HRS_C_EVT_DISCOVERY_COMPLETE: { NRF_LOG_DEBUG("Heart rate service discovered."); err_code = ble_hrs_c_handles_assign(p_hrs_c, p_hrs_c_evt->conn_handle, &p_hrs_c_evt->params.peer_db); APP_ERROR_CHECK(err_code); // Initiate bonding. err_code = pm_conn_secure(p_hrs_c_evt->conn_handle, false); if (err_code != NRF_ERROR_BUSY) { APP_ERROR_CHECK(err_code); } // Heart rate service discovered. Enable notification of Heart Rate Measurement. err_code = ble_hrs_c_hrm_notif_enable(p_hrs_c); APP_ERROR_CHECK(err_code); } break; case BLE_HRS_C_EVT_HRM_NOTIFICATION: { NRF_LOG_INFO("Heart Rate = %d.", p_hrs_c_evt->params.hrm.hr_value); heart_rate = p_hrs_c_evt->params.hrm.hr_value; if (p_hrs_c_evt->params.hrm.rr_intervals_cnt != 0) { uint32_t rr_avg = 0; for (uint32_t i = 0; i < p_hrs_c_evt->params.hrm.rr_intervals_cnt; i++) { rr_avg += p_hrs_c_evt->params.hrm.rr_intervals[i]; } rr_avg = rr_avg / p_hrs_c_evt->params.hrm.rr_intervals_cnt; NRF_LOG_DEBUG("rr_interval (avg) = %d.", rr_avg); } } break; default: break; } } /**@brief Battery level Collector Handler. */ static void bas_c_evt_handler(ble_bas_c_t *p_bas_c, ble_bas_c_evt_t *p_bas_c_evt) { NRF_LOG_INFO("bas_c_evt_handler"); ret_code_t err_code; switch (p_bas_c_evt->evt_type) { case BLE_BAS_C_EVT_DISCOVERY_COMPLETE: { err_code = ble_bas_c_handles_assign(p_bas_c, p_bas_c_evt->conn_handle, &p_bas_c_evt->params.bas_db); APP_ERROR_CHECK(err_code); // Battery service discovered. Enable notification of Battery Level. NRF_LOG_DEBUG("Battery Service discovered. Reading battery level."); err_code = ble_bas_c_bl_read(p_bas_c); APP_ERROR_CHECK(err_code); NRF_LOG_DEBUG("Enabling Battery Level Notification."); err_code = ble_bas_c_bl_notif_enable(p_bas_c); APP_ERROR_CHECK(err_code); } break; case BLE_BAS_C_EVT_BATT_NOTIFICATION: NRF_LOG_INFO("Battery Level received %d %%.", p_bas_c_evt->params.battery_level); break; case BLE_BAS_C_EVT_BATT_READ_RESP: NRF_LOG_INFO("Battery Level Read as %d %%.", p_bas_c_evt->params.battery_level); break; default: break; } } /** * @brief Heart rate collector initialization. */ static void hrs_c_init(void) { NRF_LOG_INFO("HRS_C_INIT"); ble_hrs_c_init_t hrs_c_init_obj; hrs_c_init_obj.evt_handler = hrs_c_evt_handler; hrs_c_init_obj.error_handler = service_error_handler; hrs_c_init_obj.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_hrs_c_init(&m_hrs_c, &hrs_c_init_obj); APP_ERROR_CHECK(err_code); } /** * @brief Battery level collector initialization. */ static void bas_c_init(void) { NRF_LOG_INFO("BAS_C_INIT"); ble_bas_c_init_t bas_c_init_obj; bas_c_init_obj.evt_handler = bas_c_evt_handler; bas_c_init_obj.error_handler = service_error_handler; bas_c_init_obj.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_bas_c_init(&m_bas_c, &bas_c_init_obj); APP_ERROR_CHECK(err_code); } /** * @brief Database discovery collector initialization. */ static void db_discovery_init(void) { ble_db_discovery_init_t db_init; memset(&db_init, 0, sizeof(db_init)); db_init.evt_handler = db_disc_handler; db_init.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_db_discovery_init(&db_init); APP_ERROR_CHECK(err_code); } /**@brief Retrieve a list of peer manager peer IDs. * * @param[inout] p_peers The buffer where to store the list of peer IDs. * @param[inout] p_size In: The size of the @p p_peers buffer. * Out: The number of peers copied in the buffer. */ static void peer_list_get(pm_peer_id_t *p_peers, uint32_t *p_size) { pm_peer_id_t peer_id; uint32_t peers_to_copy; peers_to_copy = (*p_size < BLE_GAP_WHITELIST_ADDR_MAX_COUNT) ? *p_size : BLE_GAP_WHITELIST_ADDR_MAX_COUNT; peer_id = pm_next_peer_id_get(PM_PEER_ID_INVALID); *p_size = 0; while ((peer_id != PM_PEER_ID_INVALID) && (peers_to_copy--)) { p_peers[(*p_size)++] = peer_id; peer_id = pm_next_peer_id_get(peer_id); } } /**@brief Function to start scanning. */ static void scan_start(void) { ret_code_t err_code; if (nrf_fstorage_is_busy(NULL)) { m_memory_access_in_progress = true; return; } NRF_LOG_INFO("Starting scan."); err_code = nrf_ble_scan_start(&m_scan); APP_ERROR_CHECK(err_code); err_code = bsp_indication_set(BSP_INDICATE_SCANNING); NRF_LOG_INFO("%d", err_code); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool *p_erase_bonds) { ret_code_t err_code; bsp_event_t startup_event; err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing the power management module. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief GATT module event handler. */ static void gatt_evt_handler(nrf_ble_gatt_t *p_gatt, nrf_ble_gatt_evt_t const *p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); switch (p_evt->evt_id) { case NRF_BLE_GATT_EVT_ATT_MTU_UPDATED: { NRF_LOG_INFO("GATT ATT MTU on connection 0x%x changed to %d.", p_evt->conn_handle, p_evt->params.att_mtu_effective); } break; case NRF_BLE_GATT_EVT_DATA_LENGTH_UPDATED: { NRF_LOG_INFO("Data length for connection 0x%x updated to %d.", p_evt->conn_handle, p_evt->params.data_length); } break; default: break; } } static void whitelist_load() { ret_code_t ret; pm_peer_id_t peers[8]; uint32_t peer_cnt; memset(peers, PM_PEER_ID_INVALID, sizeof(peers)); peer_cnt = (sizeof(peers) / sizeof(pm_peer_id_t)); // Load all peers from flash and whitelist them. peer_list_get(peers, &peer_cnt); ret = pm_whitelist_set(peers, peer_cnt); APP_ERROR_CHECK(ret); // Setup the device identies list. // Some SoftDevices do not support this feature. ret = pm_device_identities_list_set(peers, peer_cnt); if (ret != NRF_ERROR_NOT_SUPPORTED) { APP_ERROR_CHECK(ret); } } static void on_whitelist_req(void) { ret_code_t err_code; // Whitelist buffers. ble_gap_addr_t whitelist_addrs[8]; ble_gap_irk_t whitelist_irks[8]; memset(whitelist_addrs, 0x00, sizeof(whitelist_addrs)); memset(whitelist_irks, 0x00, sizeof(whitelist_irks)); uint32_t addr_cnt = (sizeof(whitelist_addrs) / sizeof(ble_gap_addr_t)); uint32_t irk_cnt = (sizeof(whitelist_irks) / sizeof(ble_gap_irk_t)); // Reload the whitelist and whitelist all peers. whitelist_load(); // Get the whitelist previously set using pm_whitelist_set(). err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt, whitelist_irks, &irk_cnt); if (((addr_cnt == 0) && (irk_cnt == 0)) || (m_whitelist_disabled)) { // Don't use whitelist. err_code = nrf_ble_scan_params_set(&m_scan, NULL); APP_ERROR_CHECK(err_code); } } static void scan_evt_handler(scan_evt_t const *p_scan_evt) { ret_code_t err_code; switch(p_scan_evt->scan_evt_id) { case NRF_BLE_SCAN_EVT_WHITELIST_REQUEST: { on_whitelist_req(); m_whitelist_disabled = false; } break; case NRF_BLE_SCAN_EVT_CONNECTING_ERROR: { err_code = p_scan_evt->params.connecting_err.err_code; APP_ERROR_CHECK(err_code); } break; case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT: { NRF_LOG_INFO("Scan timed out."); scan_start(); } break; case NRF_BLE_SCAN_EVT_FILTER_MATCH: break; case NRF_BLE_SCAN_EVT_WHITELIST_ADV_REPORT: break; default: break; } } /**@brief Function for initializing the timer. */ static void timer_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the GATT module. */ static void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for initialization scanning and setting filters. */ static void scan_init(void) { ret_code_t err_code; nrf_ble_scan_init_t init_scan; memset(&init_scan, 0, sizeof(init_scan)); init_scan.p_scan_param = &m_scan_param; init_scan.connect_if_match = true; init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG; err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler); APP_ERROR_CHECK(err_code); ble_uuid_t uuid = { .uuid = TARGET_UUID, .type = BLE_UUID_TYPE_BLE, }; err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &uuid); APP_ERROR_CHECK(err_code); if (strlen(m_target_periph_name) != 0) { err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_NAME_FILTER, m_target_periph_name); APP_ERROR_CHECK(err_code); } if (is_connect_per_addr) { err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_ADDR_FILTER, m_target_periph_addr.addr); APP_ERROR_CHECK(err_code); } err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_ALL_FILTER, false); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details Handle any pending log operation(s), then sleep until the next event occurs. */ static void idle_state_handle(void) { ret_code_t err_code; err_code = nrf_ble_lesc_request_handler(); APP_ERROR_CHECK(err_code); NRF_LOG_FLUSH(); nrf_pwr_mgmt_run(); } /**@brief Function for starting a scan, or instead trigger it from peer manager (after * deleting bonds). * * @param[in] p_erase_bonds Pointer to a bool to determine if bonds will be deleted before scanning. */ void scanning_start(bool *p_erase_bonds) { // Start scanning for peripherals and initiate connection // with devices that advertise GATT Service UUID. if (*p_erase_bonds == true) { // Scan is started by the PM_EVT_PEERS_DELETE_SUCCEEDED event. delete_bonds(); } else { scan_start(); } } static void gpio_init(void) { ret_code_t err_code; NRF_LOG_INFO("INIT gpio"); nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(false); err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config); APP_ERROR_CHECK(err_code); nrf_drv_gpiote_in_event_enable(PIN_IN, true); } static void gap_params_init(void) { ret_code_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = m_scan.conn_params.min_conn_interval; gap_conn_params.max_conn_interval = m_scan.conn_params.max_conn_interval; gap_conn_params.slave_latency = m_scan.conn_params.slave_latency; gap_conn_params.conn_sup_timeout = m_scan.conn_params.conn_sup_timeout; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } static void on_conn_params_evt(ble_conn_params_evt_t *p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } void uart_event_handle(app_uart_evt_t *p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: NRF_LOG_INFO("uart event handle"); UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (data_array[index - 1] == '\r') || (index >= m_ble_nus_max_data_len)) { if (index > 1) { NRF_LOG_INFO("uart send handle"); NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); NRF_LOG_INFO("%d", err_code); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined(UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } static void nus_data_handler(ble_nus_evt_t *p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; nrf_delay_ms(10); NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_INFO("rom BLE NUS. "); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { NRF_LOG_INFO("1 "); do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY) ; } } } static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) { err_code = nrf_ble_qwr_init(&m_qwr[i], &qwr_init); APP_ERROR_CHECK(err_code); } // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } static void advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } uint8_t gyrox=0; uint8_t gyroy=0; uint8_t gyroz=0; uint8_t accelx=1,accely=1,accelz=1; uint8_t magx=2,magy=2,magz=2; uint8_t counter=0; static uint8_t data_array2[150]; int main(void) { bool erase_bonds; uint32_t time_ms = 100; //Time(in miliseconds) between consecutive compare events. uint32_t time_ticks; uint8_t gyrox=0; uint8_t gyroy=1; uint8_t gyroz=2; uint8_t accelx=3,accely=4,accelz=5; uint8_t magx=2,magy=2,magz=2; uint8_t counter=0; uint8_t lat=6,lon=7,alt=8; static uint8_t data_array2[135]; uint32_t err_code = NRF_SUCCESS; uart_init(); log_init(); timer_init(); power_management_init(); buttons_leds_init(&erase_bonds); ble_stack_init(); gatt_init(); peer_manager_init(); db_discovery_init(); hrs_c_init(); bas_c_init(); scan_init(); gap_params_init(); services_init(); advertising_init(); conn_params_init(); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler); APP_ERROR_CHECK(err_code); time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms); nrf_drv_timer_extended_compare(&TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); nrf_drv_timer_enable(&TIMER_LED); gpio_init(); // advertising_start(); //// Start execution. NRF_LOG_INFO("Heart Rate collector example started."); // fatfs_example(); //NRF_LOG_INFO("1"); //Enter main loop. int first_row = 1; if (erase_bonds == true) { // Scanning and advertising is done upon PM_EVT_PEERS_DELETE_SUCCEEDED event. delete_bonds(); } else { adv_scan_start(); } nrf_delay_ms(5000); // Enter main loop. for (;;) { idle_state_handle(); if(peristat==1) { //for live data if(timer_call==1) { if(counter<200) { if(BLE_GATTS_EVT_SYS_ATTR_MISSING) { err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0,0); APP_ERROR_CHECK(err_code); } NRF_LOG_INFO("%d",counter); sprintf(data_array2,"{\"g_x\":%d,\"g_y\":%d,\"g_z\":%d,\"a_x\":%d,\"a_y\":%d,\"a_z\":%d,\"m_x\":%d,\"m_y\":%d,\"m_z\":%d,\"lat\":%d,\"lon\":%d,\"alt\":%d,\"hb\":%d}",gyrox,gyroy,gyroz,accelx,accely,accelz,magx,magy,magz,lat,lon,alt,heart_rate); NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array2, 1); do { uint16_t length = (uint16_t)135; err_code = ble_nus_data_send(&m_nus, data_array2, &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_NOT_FOUND)) { NRF_LOG_INFO("%d",err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); //index = 0; nrf_delay_ms(50); NRF_LOG_INFO("done"); gyrox++; gyroy++; gyroz++; accelx++; accely++; accelz++; magx++; magy++; magz++; counter++; lon++; lat++; alt++; } } } } //while(1) //{ //if(button_pressed) //{ //if(timer_call==1) //{ ////write code //ff_result = f_open(&file, FILE_NAME, FA_READ | FA_WRITE | FA_OPEN_APPEND); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Unable to open or create file: " FILE_NAME "."); //} //if(first_row==1) //{ //ff_result = f_write(&file, init , sizeof(init), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("read failed\r\n."); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //first_row=0; //} // for (int b=1 ;b<=14;b++) //{ //if(b==13) //{ //itoa(heart_rate,s_heartrate,10); //ff_result = f_write(&file, s_heartrate, sizeof(s_heartrate), (UINT *) &bytes_written); //} //else //{ //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //} //ff_result = f_write(&file, ",",1,&bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //timer_call=0; //(void) f_close(&file); ////nrf_delay_ms(100); //} // //idle_state_handle(); // //bsp_board_led_invert(3); //} //}// if(button_pressed) // uint32_t time_ms = 100; //Time(in miliseconds) between consecutive compare events. //uint32_t time_ticks ; // uint32_t err_code = NRF_SUCCESS; //bsp_board_init(BSP_INIT_LEDS); // uint32_t time_ms2 ; // nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; // NRF_LOG_INFO("FATFS example started."); // fatfs_example(); // err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler); // APP_ERROR_CHECK(err_code); }

  • Hello, 

    I have seen throughput documentation please tell me how to achieve highest rate and which example can i use to achieve highest rate . 

  • Mohsin khan said:
    Please have a look at my code

    Please check your formatting before posting. The code you have posted is absolutely unreadable.
    Please make sure to use the Insert -> Code option when sharing code here on DevZone.

    Mohsin khan said:
    I am using ble_hrs_c code

    Mohsin khan said:
    ble_nus_data_send giving me error 19 . 

    Have you successfully merged the NUS service into the ble_hrs_c example?
    Please make sure to have DEBUG defined in your preprocessor defines, like shown in the included image:

    This will make your logger output a detailed error message whenever a non-NRF_SUCCESS error code is passed to an APP_ERROR_CHECK.
    Please do this, and let me know what this error message reads.

    Mohsin khan said:
    I have seen throughput documentation please tell me how to achieve highest rate and which example can i use to achieve highest rate . 

    For a minimal throughput demonstration I would recommend that you begin with the BLE UART examples directly, and modify them to use the connection parameters detailed in the throughput documentation. The important part here is that you configure both sides of the link to accept these parameters as detailed in the documentation - including PHY, connection event length, connection interval and data length extension.

    Best regards,
    Karl

  • /**
     * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    /**
     * @brief BLE Heart Rate Collector application main file.
     *
     * This file contains the source code for a sample heart rate collector.
     */
    
    #include <stdbool.h>
    #include <stdint.h>
    #include <stdio.h>
    #include <string.h>
    
    #include "bsp.h"
    #include "diskio_blkdev.h"
    #include "ff.h"
    #include "nrf.h"
    #include "nrf_block_dev_sdc.h"
    #include "nrf_delay.h"
    #include "nrf_drv_gpiote.h"
    #include "nrf_drv_timer.h"
    
    #include "app_uart.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "ble_nus.h"
    #include "nrf_ble_qwr.h"
    
    #include "app_error.h"
    #include "app_timer.h"
    #include "app_util.h"
    #include "ble.h"
    #include "ble_bas_c.h"
    #include "ble_conn_state.h"
    #include "ble_db_discovery.h"
    #include "ble_hci.h"
    #include "ble_hrs_c.h"
    #include "ble_srv_common.h"
    #include "bsp_btn_ble.h"
    #include "fds.h"
    #include "nordic_common.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_lesc.h"
    #include "nrf_ble_scan.h"
    #include "nrf_fstorage.h"
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    #include "nrf_pwr_mgmt.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdm.h"
    #include "peer_manager.h"
    #include "peer_manager_handler.h"
    
    #if defined(UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined(UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #define FILE_NAME "hr.CSV"
    #define TEST_STRING "SD card example."
    
    #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN
    
    #ifdef BSP_BUTTON_0
    #define PIN_IN BSP_BUTTON_0
    #endif
    #ifndef PIN_IN
    #error "Please indicate input pin"
    #endif
    
    #ifdef BSP_LED_1
    #define PIN_OUT BSP_LED_1
    #endif
    #ifndef PIN_OUT
    #error "Please indicate output pin"
    #endif /**< Context for the Queued Write module.*/
    
    BLE_ADVERTISING_DEF(m_advertising);
    BLE_NUS_DEF(m_nus, 6);
    NRF_BLE_QWRS_DEF(m_qwr, 6);
    static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */
        {
            {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}};
    
    #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION 18000
    
    volatile uint8_t button_pressed = 0;
    
    volatile int timer_call = 0;
    FRESULT ff_result;
    static FIL file;
    
    uint16_t heart_rate;
    char s_heartrate[4];
    volatile uint8_t c;
    uint32_t bytes_written;
    const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(1);
    #define SDC_SCK_PIN ARDUINO_13_PIN  ///< SDC serial clock (SCK) pin.
    #define SDC_MOSI_PIN ARDUINO_11_PIN ///< SDC serial data in (DI) pin.
    #define SDC_MISO_PIN ARDUINO_12_PIN ///< SDC serial data out (DO) pin.
    #define SDC_CS_PIN ARDUINO_10_PIN   ///< SDC chip select (CS) pin.
    
    #define MIN_CONN_INTERVAL                    (uint16_t)(MSEC_TO_UNITS(7.5, UNIT_1_25_MS)) 
    #define MAX_CONN_INTERVAL                    (uint16_t)(MSEC_TO_UNITS(7.5, UNIT_1_25_MS))    /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY 0                                      /**< Slave latency. */
    #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS)     /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT 3
    
    #define DEVICE_NAME "nRF Relay"
    static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;
    #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    #define APP_SOC_OBSERVER_PRIO 1 /**< Applications' SoC observer priority. You shouldn't need to modify this value. */
    
    #define LESC_DEBUG_MODE 0 /**< Set to 1 to use LESC debug keys, allows you to use a sniffer to inspect traffic. */
    
    #define SEC_PARAM_BOND 1                               /**< Perform bonding. */
    #define SEC_PARAM_MITM 0                               /**< Man In The Middle protection not required. */
    #define SEC_PARAM_LESC 1                               /**< LE Secure Connections enabled. */
    #define SEC_PARAM_KEYPRESS 0                           /**< Keypress notifications not enabled. */
    #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */
    #define SEC_PARAM_OOB 0                                /**< Out Of Band data not available. */
    #define SEC_PARAM_MIN_KEY_SIZE 7                       /**< Minimum encryption key size in octets. */
    #define SEC_PARAM_MAX_KEY_SIZE 16                      /**< Maximum encryption key size in octets. */
    
    #define SCAN_DURATION_WITELIST 3000 /**< Duration of the scanning in units of 10 milliseconds. */
    #define HART_RATE_SERVICE_UUID_IDX 0
    #define TARGET_UUID BLE_UUID_HEART_RATE_SERVICE                /**< Target device uuid that application is looking for. */
    static uint16_t m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID; /**< Connection handle for the HRS central application */
    static uint16_t m_conn_handle_rscs_c = BLE_CONN_HANDLE_INVALID;
    char init[] = "Long,Lat,Alt,Accelx,Accely,Accelz,GYROx,GYROy,GYROz,Magx,Magy,Magz,Heartrate,Bat %  ";
    char data[] = "2221";
    
    /**@brief Macro to unpack 16bit unsigned UUID from octet stream. */
    #define UUID16_EXTRACT(DST, SRC) \
      do {                           \
        (*(DST)) = (SRC)[1];         \
        (*(DST)) <<= 8;              \
        (*(DST)) |= (SRC)[0];        \
      } while (0)
    
    NRF_BLE_GQ_DEF(m_ble_gatt_queue, /**< BLE GATT Queue instance. */
        NRF_SDH_BLE_CENTRAL_LINK_COUNT,
        NRF_BLE_GQ_QUEUE_SIZE);
    
    BLE_HRS_C_DEF(m_hrs_c);                   /**< Structure used to identify the heart rate client module. */
    BLE_BAS_C_DEF(m_bas_c);                   /**< Structure used to identify the Battery Service client module. */
    NRF_BLE_GATT_DEF(m_gatt);                 /**< GATT module instance. */
    BLE_DB_DISCOVERY_ARRAY_DEF(m_db_disc, 2); /**< Database discovery module instances. */
    NRF_BLE_SCAN_DEF(m_scan);                 /**< DB discovery module instance. */
                                              /**< Scanning module instance. */
    
    static uint16_t m_conn_handle;           /**< Current connection handle. */
    static bool m_whitelist_disabled;        /**< True if whitelist has been temporarily disabled. */
    static bool m_memory_access_in_progress; /**< Flag to keep track of ongoing operations on persistent memory. */
    
    void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) {
      c = 1;
    }
    
    NRF_BLOCK_DEV_SDC_DEFINE(
        m_block_dev_sdc,
        NRF_BLOCK_DEV_SDC_CONFIG(
            SDC_SECTOR_SIZE,
            APP_SDCARD_CONFIG(SDC_MOSI_PIN, SDC_MISO_PIN, SDC_SCK_PIN, SDC_CS_PIN)),
        NFR_BLOCK_DEV_INFO_CONFIG("Nordic", "SDC", "1.00"));
    
    void timer_led_event_handler(nrf_timer_event_t event_type, void *p_context) {
      switch (event_type) {
      case NRF_TIMER_EVENT_COMPARE0:
    
        timer_call = 1;
        break;
    
      default:
        //Do nothing.
        break;
      }
    }
    
    static void fatfs_example() {
    
      static FATFS fs;
      static DIR dir;
      static FILINFO fno;
    
      DSTATUS disk_state = STA_NOINIT;
    
      // Initialize FATFS disk I/O interface by providing the block device.
      static diskio_blkdev_t drives[] =
          {
              DISKIO_BLOCKDEV_CONFIG(NRF_BLOCKDEV_BASE_ADDR(m_block_dev_sdc, block_dev), NULL)};
    
      diskio_blockdev_register(drives, ARRAY_SIZE(drives));
    
      NRF_LOG_INFO("Initializing disk 0 (SDC)...");
      for (uint32_t retries = 3; retries && disk_state; --retries) {
        disk_state = disk_initialize(0);
      }
      if (disk_state) {
        NRF_LOG_INFO("Disk initialization failed.");
        return;
      }
    
      uint32_t blocks_per_mb = (1024uL * 1024uL) / m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_size;
      uint32_t capacity = m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_count / blocks_per_mb;
      NRF_LOG_INFO("Capacity: %d MB", capacity);
    
      NRF_LOG_INFO("Mounting volume...");
      ff_result = f_mount(&fs, "", 1);
      if (ff_result) {
        NRF_LOG_INFO("Mount failed.");
        return;
      }
    
      NRF_LOG_INFO("\r\n Listing directory: /");
      ff_result = f_opendir(&dir, "/");
      if (ff_result) {
        NRF_LOG_INFO("Directory listing failed!");
        return;
      }
    
      do {
        ff_result = f_readdir(&dir, &fno);
        if (ff_result != FR_OK) {
          NRF_LOG_INFO("Directory read failed.");
          return;
        }
    
        if (fno.fname[0]) {
          if (fno.fattrib & AM_DIR) {
            NRF_LOG_RAW_INFO("   <DIR>   %s", (uint32_t)fno.fname);
          } else {
            NRF_LOG_RAW_INFO("%9lu  %s", fno.fsize, (uint32_t)fno.fname);
          }
        }
      } while (fno.fname[0]);
      NRF_LOG_RAW_INFO("");
      uint8_t string[15];
      NRF_LOG_INFO(string);
      NRF_LOG_INFO("Writing to file " FILE_NAME "...");
      ff_result = f_open(&file, FILE_NAME, FA_READ);
      if (ff_result != FR_OK) {
        NRF_LOG_INFO("Unable to open or create file: " FILE_NAME ".");
        return;
      }
      uint16_t size;
      size = f_size(&file);
      char *data = NULL;
      data = malloc(size); /* allocate memory to store image data */
    
      NRF_LOG_INFO("File size: %d bytes", size);
      int b = 86;
      for (int a = 85; a < size; a = a + 85) {
        //NRF_LOG_INFO("%d \n",a);
        //NRF_LOG_INFO("%d \n",b);
        f_lseek(&file, b);
        ff_result = f_read(&file, string, 85, (UINT *)&bytes_written);
        if (ff_result != FR_OK) {
          NRF_LOG_INFO("read failed\r\n.");
        } else {
          // NRF_LOG_INFO("%d bytes read.", bytes_written);
        }
        //for(int i=0;i<bytes_written;i++)
        //{
        // NRF_LOG_INFO("%d  ->  %c",i,string[i]);
        //nrf_delay_ms(20);
        //}
        b = b + 85;
      }
      NRF_LOG_INFO("done");
      (void)f_close(&file);
    
      //ff_result = f_write(&file, string, sizeof(string), (UINT *) &bytes_written);
      //if (ff_result != FR_OK)
      //{
      //    NRF_LOG_INFO("Write failed\r\n.");
      //}
      //else
      //{
      //    NRF_LOG_INFO("%d bytes written.", bytes_written);
      //}
    
      //ff_result = f_write(&file, "\n",1,&bytes_written);
      //(void) f_close(&file);
      //for(int a=1 ; a<=600 ; a++)
      //{
      //for (int b=1 ;b<=14;b++)
      //{
      //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written);
      //if (ff_result != FR_OK)
      //{
      //    NRF_LOG_INFO("Write failed\r\n.");
      //}
      //else
      //{
      //    NRF_LOG_INFO("%d bytes written.", bytes_written);
      //}
      //ff_result = f_write(&file, ",",1,&bytes_written);
      //}
      //ff_result = f_write(&file, "\n",1,&bytes_written);
      //nrf_delay_ms(60);
      //}
    }
    /**< Scan parameters requested for scanning and connection. */
    static ble_gap_scan_params_t const m_scan_param =
        {
            .active = 0x01,
    #if (NRF_SD_BLE_API_VERSION > 7)
            .interval_us = NRF_BLE_SCAN_SCAN_INTERVAL * UNIT_0_625_MS,
            .window_us = NRF_BLE_SCAN_SCAN_WINDOW * UNIT_0_625_MS,
    #else
            .interval = NRF_BLE_SCAN_SCAN_INTERVAL,
            .window = NRF_BLE_SCAN_SCAN_WINDOW,
    #endif
            .filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL,
            .timeout = SCAN_DURATION_WITELIST,
            .scan_phys = BLE_GAP_PHY_1MBPS,
            .extended = true,
    
    };
    
    /**@brief Names which the central applications will scan for, and which will be advertised by the peripherals.
     *  if these are set to empty strings, the UUIDs defined below will be used
     */
    static char const m_target_periph_name[] = ""; /**< If you want to connect to a peripheral using a given advertising name, type its name here. */
    static bool is_connect_per_addr = true;        /**< If you want to connect to a peripheral with a given address, set this to true and put the correct address in the variable below. */
    
    static ble_gap_addr_t const m_target_periph_addr =
        {
            /* Possible values for addr_type:
           BLE_GAP_ADDR_TYPE_PUBLIC,
           BLE_GAP_ADDR_TYPE_RANDOM_STATIC,
           BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE,
           BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE. */
            .addr_type = BLE_GAP_ADDR_TYPE_RANDOM_STATIC,
            .addr = {0x8D, 0xFE, 0x23, 0x86, 0x77, 0xD9}};
    
    static void scan_start(void);
    
    /**@brief Function for asserts in the SoftDevice.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyze
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num     Line number of the failing ASSERT call.
     * @param[in] p_file_name  File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t *p_file_name) {
      app_error_handler(0xDEADBEEF, line_num, p_file_name);
    }
    
    /**@brief Function for handling the Heart Rate Service Client and Battery Service Client errors.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void service_error_handler(uint32_t nrf_error) {
      APP_ERROR_HANDLER(nrf_error);
    }
    
    /**@brief Function for handling database discovery events.
     *
     * @details This function is callback function to handle events from the database discovery module.
     *          Depending on the UUIDs that are discovered, this function should forward the events
     *          to their respective services.
     *
     * @param[in] p_event  Pointer to the database discovery event.
     */
    static void db_disc_handler(ble_db_discovery_evt_t *p_evt) {
      ble_hrs_on_db_disc_evt(&m_hrs_c, p_evt);
      ble_bas_on_db_disc_evt(&m_bas_c, p_evt);
    }
    
    /**@brief Function for handling Peer Manager events.
     *
     * @param[in] p_evt  Peer Manager event.
     */
    
    static void adv_scan_start(void) {
      ret_code_t err_code;
    
      //check if there are no flash operations in progress
      if (!nrf_fstorage_is_busy(NULL)) {
        // Start scanning for peripherals and initiate connection to devices which
        // advertise Heart Rate or Running speed and cadence UUIDs.
        scan_start();
    
        // Turn on the LED to signal scanning.
        bsp_board_led_on(BSP_BOARD_LED_0);
    
        // Start advertising.
        err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
      }
    }
    static void pm_evt_handler(pm_evt_t const *p_evt) {
      pm_handler_on_pm_evt(p_evt);
      pm_handler_disconnect_on_sec_failure(p_evt);
      pm_handler_flash_clean(p_evt);
    
      switch (p_evt->evt_id) {
      case PM_EVT_PEERS_DELETE_SUCCEEDED:
        // Bonds are deleted. Start scanning.
        adv_scan_start();
        break;
    
      default:
        break;
      }
    }
    
    /**
     * @brief Function for shutdown events.
     *
     * @param[in]   event       Shutdown type.
     */
    static bool shutdown_handler(nrf_pwr_mgmt_evt_t event) {
      ret_code_t err_code;
    
      err_code = bsp_indication_set(BSP_INDICATE_IDLE);
      APP_ERROR_CHECK(err_code);
    
      switch (event) {
      case NRF_PWR_MGMT_EVT_PREPARE_WAKEUP:
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
        break;
      default:
        break;
      }
    
      return true;
    }
    
    NRF_PWR_MGMT_HANDLER_REGISTER(shutdown_handler, APP_SHUTDOWN_HANDLER_PRIORITY);
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void multi_qwr_conn_handle_assign(uint16_t conn_handle) {
      for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) {
        if (m_qwr[i].conn_handle == BLE_CONN_HANDLE_INVALID) {
          ret_code_t err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr[i], conn_handle);
          APP_ERROR_CHECK(err_code);
          break;
        }
      }
    }
    volatile uint8_t peristat=0;
    static void on_ble_peripheral_evt(ble_evt_t const *p_ble_evt) {
      uint32_t err_code;
    
      switch (p_ble_evt->header.evt_id) {
      case BLE_GAP_EVT_CONNECTED:
    
        NRF_LOG_INFO("peripheral Connected");
        nrf_delay_ms(20);
        peristat=1;
        err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
        APP_ERROR_CHECK(err_code);
    
        m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
        multi_qwr_conn_handle_assign(p_ble_evt->evt.gap_evt.conn_handle);
        APP_ERROR_CHECK(err_code);
        break;
    
      case BLE_GAP_EVT_DISCONNECTED:
        NRF_LOG_INFO("Disconnected");
        peristat=0;
        // LED indication will be changed when advertising starts.
        m_conn_handle = BLE_CONN_HANDLE_INVALID;
        break;
    
      case BLE_GAP_EVT_PHY_UPDATE_REQUEST: {
        NRF_LOG_DEBUG("PHY update request.");
        ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_2MBPS | BLE_GAP_PHY_1MBPS | BLE_GAP_PHY_CODED,
                .tx_phys = BLE_GAP_PHY_2MBPS | BLE_GAP_PHY_1MBPS | BLE_GAP_PHY_CODED,
            };
        err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
        APP_ERROR_CHECK(err_code);
      } break;
    
      case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
        // Pairing not supported
        err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
        APP_ERROR_CHECK(err_code);
        break;
    
      case BLE_GATTS_EVT_SYS_ATTR_MISSING:
        // No system attributes have been stored.
        err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
        APP_ERROR_CHECK(err_code);
        break;
    
      case BLE_GATTC_EVT_TIMEOUT:
        // Disconnect on GATT Client timeout event.
        err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
            BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
        APP_ERROR_CHECK(err_code);
        break;
    
      case BLE_GATTS_EVT_TIMEOUT:
        // Disconnect on GATT Server timeout event.
        err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
            BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
        APP_ERROR_CHECK(err_code);
        break;
    
      default:
        // No implementation needed.
        break;
      }
    }
    
    static void on_ble_central_evt(ble_evt_t const *p_ble_evt) {
      ret_code_t err_code;
      ble_gap_evt_t const *p_gap_evt = &p_ble_evt->evt.gap_evt;
    
      switch (p_ble_evt->header.evt_id) {
      // Upon connection, check which peripheral is connected (HR or RSC), initiate DB
      // discovery, update LEDs status, and resume scanning, if necessary.
      case BLE_GAP_EVT_CONNECTED: {
        NRF_LOG_INFO("Central connected");
        // If no Heart Rate sensor or RSC sensor is currently connected, try to find them on this peripheral.
        if ((m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID)) {
          NRF_LOG_INFO("Attempt to find HRS or RSC on conn_handle 0x%x", p_gap_evt->conn_handle);
    
          err_code = ble_db_discovery_start(&m_db_disc[0], p_gap_evt->conn_handle);
          if (err_code == NRF_ERROR_BUSY) {
            err_code = ble_db_discovery_start(&m_db_disc[1], p_gap_evt->conn_handle);
            APP_ERROR_CHECK(err_code);
          } else {
            APP_ERROR_CHECK(err_code);
          }
        }
    
        // Assign connection handle to the QWR module.
        multi_qwr_conn_handle_assign(p_gap_evt->conn_handle);
    
        // Update LEDs status, and check whether to look for more peripherals to connect to.
        bsp_board_led_on(BSP_BOARD_LED_1);
        if (ble_conn_state_central_conn_count() == NRF_SDH_BLE_CENTRAL_LINK_COUNT) {
          bsp_board_led_off(BSP_BOARD_LED_0);
        } else {
          // Resume scanning.
          bsp_board_led_on(BSP_BOARD_LED_0);
          scan_start();
        }
      } break; // BLE_GAP_EVT_CONNECTED
    
      // Upon disconnection, reset the connection handle of the peer that disconnected,
      // update the LEDs status and start scanning again.
      case BLE_GAP_EVT_DISCONNECTED: {
        if (p_gap_evt->conn_handle == m_conn_handle_hrs_c) {
          NRF_LOG_INFO("HRS central disconnected (reason: %d)",
              p_gap_evt->params.disconnected.reason);
    
          m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID;
    
          err_code = nrf_ble_scan_filter_set(&m_scan,
              SCAN_UUID_FILTER,
              &m_adv_uuids[HART_RATE_SERVICE_UUID_IDX]);
          APP_ERROR_CHECK(err_code);
        }
    
        if ((m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID)) {
          // Start scanning.
          scan_start();
    
          // Update LEDs status.
          bsp_board_led_on(BSP_BOARD_LED_0);
        }
    
        if (ble_conn_state_central_conn_count() == 0) {
          bsp_board_led_off(BSP_BOARD_LED_1);
        }
      } break; // BLE_GAP_EVT_DISCONNECTED
    
      case BLE_GAP_EVT_TIMEOUT: {
        // No timeout for scanning is specified, so only connection attemps can timeout.
        if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN) {
          NRF_LOG_INFO("Connection Request timed out.");
        }
      } break;
    
      case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST: {
        // Accept parameters requested by peer.
        err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle,
            &p_gap_evt->params.conn_param_update_request.conn_params);
        APP_ERROR_CHECK(err_code);
      } break;
    
      case BLE_GAP_EVT_PHY_UPDATE_REQUEST: {
        NRF_LOG_DEBUG("PHY update request.");
        ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
        err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
        APP_ERROR_CHECK(err_code);
      } break;
    
      case BLE_GATTC_EVT_TIMEOUT:
        // Disconnect on GATT Client timeout event.
        NRF_LOG_DEBUG("GATT Client Timeout.");
        err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
            BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
        APP_ERROR_CHECK(err_code);
        break;
    
      case BLE_GATTS_EVT_TIMEOUT:
        // Disconnect on GATT Server timeout event.
        NRF_LOG_DEBUG("GATT Server Timeout.");
        err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
            BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
        APP_ERROR_CHECK(err_code);
        break;
    
      default:
        // No implementation needed.
        break;
      }
    }
    
    /**@brief   Function for handling BLE events from peripheral applications.
     * @details Updates the status LEDs used to report the activity of the peripheral applications.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     */
    
    static bool ble_evt_is_advertising_timeout(ble_evt_t const *p_ble_evt) {
      return (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_SET_TERMINATED);
    }
    static void ble_evt_handler(ble_evt_t const *p_ble_evt, void *p_context) {
      uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
      uint16_t role = ble_conn_state_role(conn_handle);
    
      // Based on the role this device plays in the connection, dispatch to the right handler.
      if (role == BLE_GAP_ROLE_PERIPH || ble_evt_is_advertising_timeout(p_ble_evt)) {
        //ble_hrs_on_ble_evt(p_ble_evt, &m_hrs);
        ble_nus_on_ble_evt(p_ble_evt, &m_nus);
        on_ble_peripheral_evt(p_ble_evt);
      } else if ((role == BLE_GAP_ROLE_CENTRAL) || (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_REPORT)) {
        ble_hrs_c_on_ble_evt(p_ble_evt, &m_hrs_c);
        //ble_nus_on_ble_evt(p_ble_evt,&m_nus);
        on_ble_central_evt(p_ble_evt);
      }
    }
    
    /**@brief SoftDevice SoC event handler.
     *
     * @param[in]   evt_id      SoC event.
     * @param[in]   p_context   Context.
     */
    static void soc_evt_handler(uint32_t evt_id, void *p_context) {
      switch (evt_id) {
      case NRF_EVT_FLASH_OPERATION_SUCCESS:
        /* fall through */
      case NRF_EVT_FLASH_OPERATION_ERROR:
    
        if (m_memory_access_in_progress) {
          m_memory_access_in_progress = false;
          scan_start();
        }
        break;
    
      default:
        // No implementation needed.
        break;
      }
    }
    /**@brief Function for initializing the BLE stack.
     *
     * @details Initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void) {
      ret_code_t err_code;
    
      err_code = nrf_sdh_enable_request();
      APP_ERROR_CHECK(err_code);
    
      // Configure the BLE stack using the default settings.
      // Fetch the start address of the application RAM.
      uint32_t ram_start = 0;
      err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
      APP_ERROR_CHECK(err_code);
    
      // Enable BLE stack.
      err_code = nrf_sdh_ble_enable(&ram_start);
      NRF_LOG_INFO("%d", err_code);
      APP_ERROR_CHECK(err_code);
    
      // Register handlers for BLE and SoC events.
      NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
      NRF_SDH_SOC_OBSERVER(m_soc_observer, APP_SOC_OBSERVER_PRIO, soc_evt_handler, NULL);
    }
    
    /**@brief Function for the Peer Manager initialization.
     */
    static void peer_manager_init(void) {
      ble_gap_sec_params_t sec_param;
      ret_code_t err_code;
    
      err_code = pm_init();
      APP_ERROR_CHECK(err_code);
    
      memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));
    
      // Security parameters to be used for all security procedures.
      sec_param.bond = SEC_PARAM_BOND;
      sec_param.mitm = SEC_PARAM_MITM;
      sec_param.lesc = SEC_PARAM_LESC;
      sec_param.keypress = SEC_PARAM_KEYPRESS;
      sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES;
      sec_param.oob = SEC_PARAM_OOB;
      sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE;
      sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE;
      sec_param.kdist_own.enc = 1;
      sec_param.kdist_own.id = 1;
      sec_param.kdist_peer.enc = 1;
      sec_param.kdist_peer.id = 1;
    
      err_code = pm_sec_params_set(&sec_param);
      APP_ERROR_CHECK(err_code);
    
      err_code = pm_register(pm_evt_handler);
      APP_ERROR_CHECK(err_code);
    }
    
    /** @brief Clear bonding information from persistent storage
     */
    static void delete_bonds(void) {
      ret_code_t err_code;
    
      NRF_LOG_INFO("Erase bonds!");
    
      err_code = pm_peers_delete();
      APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for disabling the use of whitelist for scanning.
     */
    static void whitelist_disable(void) {
      if (!m_whitelist_disabled) {
        NRF_LOG_INFO("Whitelist temporarily disabled.");
        m_whitelist_disabled = true;
        nrf_ble_scan_stop();
        scan_start();
      }
    }
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event) {
      ret_code_t err_code;
    
      switch (event) {
      case BSP_EVENT_SLEEP:
        nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF);
        break;
    
      case BSP_EVENT_DISCONNECT:
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
        if (err_code != NRF_ERROR_INVALID_STATE) {
          APP_ERROR_CHECK(err_code);
        }
        break;
    
      case BSP_EVENT_WHITELIST_OFF:
        whitelist_disable();
        break;
    
      default:
        break;
      }
    }
    
    /**@brief Heart Rate Collector Handler.
     */
    static void hrs_c_evt_handler(ble_hrs_c_t *p_hrs_c, ble_hrs_c_evt_t *p_hrs_c_evt) {
      NRF_LOG_INFO("hrs_c_evt_handler");
      ret_code_t err_code;
    
      switch (p_hrs_c_evt->evt_type) {
      case BLE_HRS_C_EVT_DISCOVERY_COMPLETE: {
        NRF_LOG_DEBUG("Heart rate service discovered.");
    
        err_code = ble_hrs_c_handles_assign(p_hrs_c,
            p_hrs_c_evt->conn_handle,
            &p_hrs_c_evt->params.peer_db);
        APP_ERROR_CHECK(err_code);
    
        // Initiate bonding.
        err_code = pm_conn_secure(p_hrs_c_evt->conn_handle, false);
        if (err_code != NRF_ERROR_BUSY) {
          APP_ERROR_CHECK(err_code);
        }
    
        // Heart rate service discovered. Enable notification of Heart Rate Measurement.
        err_code = ble_hrs_c_hrm_notif_enable(p_hrs_c);
        APP_ERROR_CHECK(err_code);
      } break;
    
      case BLE_HRS_C_EVT_HRM_NOTIFICATION: {
        NRF_LOG_INFO("Heart Rate = %d.", p_hrs_c_evt->params.hrm.hr_value);
        heart_rate = p_hrs_c_evt->params.hrm.hr_value;
    
        if (p_hrs_c_evt->params.hrm.rr_intervals_cnt != 0) {
          uint32_t rr_avg = 0;
          for (uint32_t i = 0; i < p_hrs_c_evt->params.hrm.rr_intervals_cnt; i++) {
            rr_avg += p_hrs_c_evt->params.hrm.rr_intervals[i];
          }
          rr_avg = rr_avg / p_hrs_c_evt->params.hrm.rr_intervals_cnt;
          NRF_LOG_DEBUG("rr_interval (avg) = %d.", rr_avg);
        }
      } break;
    
      default:
        break;
      }
    }
    
    /**@brief Battery level Collector Handler.
     */
    static void bas_c_evt_handler(ble_bas_c_t *p_bas_c, ble_bas_c_evt_t *p_bas_c_evt) {
      NRF_LOG_INFO("bas_c_evt_handler");
      ret_code_t err_code;
    
      switch (p_bas_c_evt->evt_type) {
      case BLE_BAS_C_EVT_DISCOVERY_COMPLETE: {
        err_code = ble_bas_c_handles_assign(p_bas_c,
            p_bas_c_evt->conn_handle,
            &p_bas_c_evt->params.bas_db);
        APP_ERROR_CHECK(err_code);
    
        // Battery service discovered. Enable notification of Battery Level.
        NRF_LOG_DEBUG("Battery Service discovered. Reading battery level.");
    
        err_code = ble_bas_c_bl_read(p_bas_c);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEBUG("Enabling Battery Level Notification.");
        err_code = ble_bas_c_bl_notif_enable(p_bas_c);
        APP_ERROR_CHECK(err_code);
    
      } break;
    
      case BLE_BAS_C_EVT_BATT_NOTIFICATION:
        NRF_LOG_INFO("Battery Level received %d %%.", p_bas_c_evt->params.battery_level);
        break;
    
      case BLE_BAS_C_EVT_BATT_READ_RESP:
        NRF_LOG_INFO("Battery Level Read as %d %%.", p_bas_c_evt->params.battery_level);
        break;
    
      default:
        break;
      }
    }
    
    /**
     * @brief Heart rate collector initialization.
     */
    static void hrs_c_init(void) {
      NRF_LOG_INFO("HRS_C_INIT");
      ble_hrs_c_init_t hrs_c_init_obj;
    
      hrs_c_init_obj.evt_handler = hrs_c_evt_handler;
      hrs_c_init_obj.error_handler = service_error_handler;
      hrs_c_init_obj.p_gatt_queue = &m_ble_gatt_queue;
    
      ret_code_t err_code = ble_hrs_c_init(&m_hrs_c, &hrs_c_init_obj);
      APP_ERROR_CHECK(err_code);
    }
    
    /**
     * @brief Battery level collector initialization.
     */
    static void bas_c_init(void) {
      NRF_LOG_INFO("BAS_C_INIT");
      ble_bas_c_init_t bas_c_init_obj;
    
      bas_c_init_obj.evt_handler = bas_c_evt_handler;
      bas_c_init_obj.error_handler = service_error_handler;
      bas_c_init_obj.p_gatt_queue = &m_ble_gatt_queue;
    
      ret_code_t err_code = ble_bas_c_init(&m_bas_c, &bas_c_init_obj);
      APP_ERROR_CHECK(err_code);
    }
    
    /**
     * @brief Database discovery collector initialization.
     */
    static void db_discovery_init(void) {
      ble_db_discovery_init_t db_init;
    
      memset(&db_init, 0, sizeof(db_init));
    
      db_init.evt_handler = db_disc_handler;
      db_init.p_gatt_queue = &m_ble_gatt_queue;
    
      ret_code_t err_code = ble_db_discovery_init(&db_init);
    
      APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Retrieve a list of peer manager peer IDs.
     *
     * @param[inout] p_peers   The buffer where to store the list of peer IDs.
     * @param[inout] p_size    In: The size of the @p p_peers buffer.
     *                         Out: The number of peers copied in the buffer.
     */
    static void peer_list_get(pm_peer_id_t *p_peers, uint32_t *p_size) {
      pm_peer_id_t peer_id;
      uint32_t peers_to_copy;
    
      peers_to_copy = (*p_size < BLE_GAP_WHITELIST_ADDR_MAX_COUNT) ? *p_size : BLE_GAP_WHITELIST_ADDR_MAX_COUNT;
    
      peer_id = pm_next_peer_id_get(PM_PEER_ID_INVALID);
      *p_size = 0;
    
      while ((peer_id != PM_PEER_ID_INVALID) && (peers_to_copy--)) {
        p_peers[(*p_size)++] = peer_id;
        peer_id = pm_next_peer_id_get(peer_id);
      }
    }
    
    /**@brief Function to start scanning.
     */
    static void scan_start(void) {
      ret_code_t err_code;
    
      if (nrf_fstorage_is_busy(NULL)) {
        m_memory_access_in_progress = true;
        return;
      }
    
      NRF_LOG_INFO("Starting scan.");
    
      err_code = nrf_ble_scan_start(&m_scan);
      APP_ERROR_CHECK(err_code);
    
      err_code = bsp_indication_set(BSP_INDICATE_SCANNING);
      NRF_LOG_INFO("%d", err_code);
      APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool *p_erase_bonds) {
      ret_code_t err_code;
      bsp_event_t startup_event;
    
      err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
      APP_ERROR_CHECK(err_code);
    
      err_code = bsp_btn_ble_init(NULL, &startup_event);
      APP_ERROR_CHECK(err_code);
    
      *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void) {
      ret_code_t err_code = NRF_LOG_INIT(NULL);
      APP_ERROR_CHECK(err_code);
    
      NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    /**@brief Function for initializing the power management module. */
    static void power_management_init(void) {
      ret_code_t err_code;
      err_code = nrf_pwr_mgmt_init();
      APP_ERROR_CHECK(err_code);
    }
    
    /**@brief GATT module event handler.
     */
    static void gatt_evt_handler(nrf_ble_gatt_t *p_gatt, nrf_ble_gatt_evt_t const *p_evt) {
    
      if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
      }
      NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
          p_gatt->att_mtu_desired_central,
          p_gatt->att_mtu_desired_periph);
      switch (p_evt->evt_id) {
      case NRF_BLE_GATT_EVT_ATT_MTU_UPDATED: {
        NRF_LOG_INFO("GATT ATT MTU on connection 0x%x changed to %d.",
            p_evt->conn_handle,
            p_evt->params.att_mtu_effective);
      } break;
    
      case NRF_BLE_GATT_EVT_DATA_LENGTH_UPDATED: {
        NRF_LOG_INFO("Data length for connection 0x%x updated to %d.",
            p_evt->conn_handle,
            p_evt->params.data_length);
      } break;
    
      default:
        break;
      }
    }
    static void whitelist_load()
    {
        ret_code_t   ret;
        pm_peer_id_t peers[8];
        uint32_t     peer_cnt;
    
        memset(peers, PM_PEER_ID_INVALID, sizeof(peers));
        peer_cnt = (sizeof(peers) / sizeof(pm_peer_id_t));
    
        // Load all peers from flash and whitelist them.
        peer_list_get(peers, &peer_cnt);
    
        ret = pm_whitelist_set(peers, peer_cnt);
        APP_ERROR_CHECK(ret);
    
        // Setup the device identies list.
        // Some SoftDevices do not support this feature.
        ret = pm_device_identities_list_set(peers, peer_cnt);
        if (ret != NRF_ERROR_NOT_SUPPORTED)
        {
            APP_ERROR_CHECK(ret);
        }
    }
    static void on_whitelist_req(void)
    {
        ret_code_t err_code;
    
        // Whitelist buffers.
        ble_gap_addr_t whitelist_addrs[8];
        ble_gap_irk_t  whitelist_irks[8];
    
        memset(whitelist_addrs, 0x00, sizeof(whitelist_addrs));
        memset(whitelist_irks,  0x00, sizeof(whitelist_irks));
    
        uint32_t addr_cnt = (sizeof(whitelist_addrs) / sizeof(ble_gap_addr_t));
        uint32_t irk_cnt  = (sizeof(whitelist_irks)  / sizeof(ble_gap_irk_t));
    
        // Reload the whitelist and whitelist all peers.
        whitelist_load();
    
        // Get the whitelist previously set using pm_whitelist_set().
        err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt,
                                    whitelist_irks,  &irk_cnt);
    
        if (((addr_cnt == 0) && (irk_cnt == 0)) ||
            (m_whitelist_disabled))
        {
            // Don't use whitelist.
            err_code = nrf_ble_scan_params_set(&m_scan, NULL);
            APP_ERROR_CHECK(err_code);
        }
    }
    static void scan_evt_handler(scan_evt_t const *p_scan_evt) {
      ret_code_t err_code;
        switch(p_scan_evt->scan_evt_id)
        {
            case NRF_BLE_SCAN_EVT_WHITELIST_REQUEST:
            {
                on_whitelist_req();
                m_whitelist_disabled = false;
            } break;
    
            case NRF_BLE_SCAN_EVT_CONNECTING_ERROR:
            {
                err_code = p_scan_evt->params.connecting_err.err_code;
                APP_ERROR_CHECK(err_code);
            } break;
    
            case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT:
            {
                NRF_LOG_INFO("Scan timed out.");
                scan_start();
            } break;
    
            case NRF_BLE_SCAN_EVT_FILTER_MATCH:
                break;
            case NRF_BLE_SCAN_EVT_WHITELIST_ADV_REPORT:
                break;
    
            default:
              break;
        }
    }
    
    /**@brief Function for initializing the timer.
     */
    static void timer_init(void) {
      ret_code_t err_code = app_timer_init();
      APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for initializing the GATT module.
     */
    static void gatt_init(void) {
      ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
      APP_ERROR_CHECK(err_code);
    
      err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
      APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for initialization scanning and setting filters.
     */
    static void scan_init(void) {
      ret_code_t err_code;
      nrf_ble_scan_init_t init_scan;
    
      memset(&init_scan, 0, sizeof(init_scan));
    
      init_scan.p_scan_param = &m_scan_param;
      init_scan.connect_if_match = true;
      init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG;
    
      err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler);
      APP_ERROR_CHECK(err_code);
    
      ble_uuid_t uuid =
          {
              .uuid = TARGET_UUID,
              .type = BLE_UUID_TYPE_BLE,
          };
    
      err_code = nrf_ble_scan_filter_set(&m_scan,
          SCAN_UUID_FILTER,
          &uuid);
      APP_ERROR_CHECK(err_code);
    
      if (strlen(m_target_periph_name) != 0) {
        err_code = nrf_ble_scan_filter_set(&m_scan,
            SCAN_NAME_FILTER,
            m_target_periph_name);
        APP_ERROR_CHECK(err_code);
      }
    
      if (is_connect_per_addr) {
        err_code = nrf_ble_scan_filter_set(&m_scan,
            SCAN_ADDR_FILTER,
            m_target_periph_addr.addr);
        APP_ERROR_CHECK(err_code);
      }
    
      err_code = nrf_ble_scan_filters_enable(&m_scan,
          NRF_BLE_SCAN_ALL_FILTER,
          false);
      APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details Handle any pending log operation(s), then sleep until the next event occurs.
     */
    static void idle_state_handle(void) {
      ret_code_t err_code;
    
      err_code = nrf_ble_lesc_request_handler();
      APP_ERROR_CHECK(err_code);
    
      NRF_LOG_FLUSH();
      nrf_pwr_mgmt_run();
    }
    
    /**@brief Function for starting a scan, or instead trigger it from peer manager (after
     *        deleting bonds).
     *
     * @param[in] p_erase_bonds Pointer to a bool to determine if bonds will be deleted before scanning.
     */
    void scanning_start(bool *p_erase_bonds) {
      // Start scanning for peripherals and initiate connection
      // with devices that advertise GATT Service UUID.
      if (*p_erase_bonds == true) {
        // Scan is started by the PM_EVT_PEERS_DELETE_SUCCEEDED event.
        delete_bonds();
      } else {
        scan_start();
      }
    }
    
    static void gpio_init(void) {
      ret_code_t err_code;
      NRF_LOG_INFO("INIT gpio");
    
      nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(false);
    
      err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config);
      APP_ERROR_CHECK(err_code);
    
      nrf_drv_gpiote_in_event_enable(PIN_IN, true);
    }
    
    static void gap_params_init(void) {
      ret_code_t err_code;
      ble_gap_conn_params_t gap_conn_params;
      ble_gap_conn_sec_mode_t sec_mode;
    
      BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
      err_code = sd_ble_gap_device_name_set(&sec_mode,
          (const uint8_t *)DEVICE_NAME,
          strlen(DEVICE_NAME));
      APP_ERROR_CHECK(err_code);
    
      memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
      gap_conn_params.min_conn_interval = m_scan.conn_params.min_conn_interval;
      gap_conn_params.max_conn_interval = m_scan.conn_params.max_conn_interval;
      gap_conn_params.slave_latency = m_scan.conn_params.slave_latency;
      gap_conn_params.conn_sup_timeout = m_scan.conn_params.conn_sup_timeout;
    
      err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
      APP_ERROR_CHECK(err_code);
    }
    static void on_conn_params_evt(ble_conn_params_evt_t *p_evt) {
      uint32_t err_code;
    
      if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
      }
    }
    
    static void conn_params_error_handler(uint32_t nrf_error) {
      APP_ERROR_HANDLER(nrf_error);
    }
    
    static void conn_params_init(void) {
      uint32_t err_code;
      ble_conn_params_init_t cp_init;
    
      memset(&cp_init, 0, sizeof(cp_init));
    
      cp_init.p_conn_params = NULL;
      cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
      cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
      cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
      cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
      cp_init.disconnect_on_fail = false;
      cp_init.evt_handler = on_conn_params_evt;
      cp_init.error_handler = conn_params_error_handler;
    
      err_code = ble_conn_params_init(&cp_init);
      APP_ERROR_CHECK(err_code);
    }
    
    void uart_event_handle(app_uart_evt_t *p_event) {
      static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
      static uint8_t index = 0;
      uint32_t err_code;
    
      switch (p_event->evt_type) {
      case APP_UART_DATA_READY:
        NRF_LOG_INFO("uart event handle");
        UNUSED_VARIABLE(app_uart_get(&data_array[index]));
        index++;
    
        if ((data_array[index - 1] == '\n') ||
            (data_array[index - 1] == '\r') ||
            (index >= m_ble_nus_max_data_len)) {
          if (index > 1) {
            NRF_LOG_INFO("uart send handle");
            NRF_LOG_DEBUG("Ready to send data over BLE NUS");
            NRF_LOG_HEXDUMP_DEBUG(data_array, index);
    
            do {
              uint16_t length = (uint16_t)index;
              err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
              NRF_LOG_INFO("%d", err_code);
    
              if ((err_code != NRF_ERROR_INVALID_STATE) &&
                  (err_code != NRF_ERROR_RESOURCES) &&
                  (err_code != NRF_ERROR_NOT_FOUND)) {
                APP_ERROR_CHECK(err_code);
              }
            } while (err_code == NRF_ERROR_RESOURCES);
          }
    
          index = 0;
        }
        break;
    
      case APP_UART_COMMUNICATION_ERROR:
        APP_ERROR_HANDLER(p_event->data.error_communication);
        break;
    
      case APP_UART_FIFO_ERROR:
        APP_ERROR_HANDLER(p_event->data.error_code);
        break;
    
      default:
        break;
      }
    }
    /**@snippet [Handling the data received over UART] */
    
    #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE 256
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void) {
      uint32_t err_code;
      app_uart_comm_params_t const comm_params =
      {
        .rx_pin_no = RX_PIN_NUMBER,
        .tx_pin_no = TX_PIN_NUMBER,
        .rts_pin_no = RTS_PIN_NUMBER,
        .cts_pin_no = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity = false,
    #if defined(UART_PRESENT)
        .baud_rate = NRF_UART_BAUDRATE_115200
    #else
        .baud_rate = NRF_UARTE_BAUDRATE_115200
    #endif
      };
    
      APP_UART_FIFO_INIT(&comm_params,
          UART_RX_BUF_SIZE,
          UART_TX_BUF_SIZE,
          uart_event_handle,
          APP_IRQ_PRIORITY_LOWEST,
          err_code);
      APP_ERROR_CHECK(err_code);
    }
    static void nrf_qwr_error_handler(uint32_t nrf_error) {
      APP_ERROR_HANDLER(nrf_error);
    }
    static void nus_data_handler(ble_nus_evt_t *p_evt) {
    
      if (p_evt->type == BLE_NUS_EVT_RX_DATA) {
        uint32_t err_code;
        nrf_delay_ms(10);
        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_INFO("rom BLE NUS. ");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    
        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) {
          NRF_LOG_INFO("1 ");
          do {
            err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
            if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) {
              NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
              APP_ERROR_CHECK(err_code);
            }
          } while (err_code == NRF_ERROR_BUSY);
        }
        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') {
          while (app_uart_put('\n') == NRF_ERROR_BUSY)
            ;
        }
      }
    }
    static void sleep_mode_enter(void) {
      uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
      APP_ERROR_CHECK(err_code);
    
      // Prepare wakeup buttons.
      err_code = bsp_btn_ble_sleep_mode_prepare();
      APP_ERROR_CHECK(err_code);
    
      // Go to system-off mode (this function will not return; wakeup will cause a reset).
      err_code = sd_power_system_off();
      APP_ERROR_CHECK(err_code);
    }
    static void services_init(void) {
      uint32_t err_code;
      ble_nus_init_t nus_init;
      nrf_ble_qwr_init_t qwr_init = {0};
    
      // Initialize Queued Write Module.
      qwr_init.error_handler = nrf_qwr_error_handler;
    
      for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) {
        err_code = nrf_ble_qwr_init(&m_qwr[i], &qwr_init);
        APP_ERROR_CHECK(err_code);
      }
    
      // Initialize NUS.
      memset(&nus_init, 0, sizeof(nus_init));
    
      nus_init.data_handler = nus_data_handler;
    
      err_code = ble_nus_init(&m_nus, &nus_init);
      APP_ERROR_CHECK(err_code);
    }
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt) {
      uint32_t err_code;
    
      switch (ble_adv_evt) {
      case BLE_ADV_EVT_FAST:
        err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
        APP_ERROR_CHECK(err_code);
        break;
      case BLE_ADV_EVT_IDLE:
        sleep_mode_enter();
        break;
      default:
        break;
      }
    }
    
    static void advertising_init(void) {
      uint32_t err_code;
      ble_advertising_init_t init;
    
      memset(&init, 0, sizeof(init));
    
      init.advdata.name_type = BLE_ADVDATA_FULL_NAME;
      init.advdata.include_appearance = false;
      init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
      init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
      init.srdata.uuids_complete.p_uuids = m_adv_uuids;
    
      init.config.ble_adv_fast_enabled = true;
      init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
      init.config.ble_adv_fast_timeout = APP_ADV_DURATION;
      init.evt_handler = on_adv_evt;
    
      err_code = ble_advertising_init(&m_advertising, &init);
      APP_ERROR_CHECK(err_code);
    
      ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    static void advertising_start(void) {
      uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
      APP_ERROR_CHECK(err_code);
    }
    uint8_t gyrox=0;
    uint8_t gyroy=0;
    uint8_t gyroz=0;
    uint8_t accelx=1,accely=1,accelz=1;
    uint8_t magx=2,magy=2,magz=2;
    uint8_t counter=0;
    static uint8_t data_array2[135];
    
    int main(void) {
      bool erase_bonds;
      uint32_t time_ms = 10; //Time(in miliseconds) between consecutive compare events.
      uint32_t time_ticks;
      
      uint8_t gyrox=0;
      uint8_t gyroy=1;
      uint8_t gyroz=2;
      uint8_t accelx=3,accely=4,accelz=5;
      uint8_t magx=2,magy=2,magz=2;
      uint8_t counter=0;
      uint8_t lat=6,lon=7,alt=8;
      static uint8_t data_array2[135];
      
    
      uint32_t err_code = NRF_SUCCESS;
       uart_init();
      log_init();
    
      timer_init();
      power_management_init();
      buttons_leds_init(&erase_bonds);
      ble_stack_init();
      gatt_init();
      peer_manager_init();
      db_discovery_init();
      hrs_c_init();
      bas_c_init();
      scan_init();
      gap_params_init();
      services_init();
      advertising_init();
      conn_params_init();
      nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
      err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler);
      APP_ERROR_CHECK(err_code);
      time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms);
      nrf_drv_timer_extended_compare(&TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);
      nrf_drv_timer_enable(&TIMER_LED);
      gpio_init();
      
    
      // advertising_start();
      //// Start execution.
      NRF_LOG_INFO("Heart Rate collector example started.");
    
      // fatfs_example();
    
      //NRF_LOG_INFO("1");
      //Enter main loop.
      int first_row = 1;
      if (erase_bonds == true) {
        // Scanning and advertising is done upon PM_EVT_PEERS_DELETE_SUCCEEDED event.
        delete_bonds();
      } else {
        adv_scan_start();
      }
      nrf_delay_ms(5000);
      // Enter main loop.
      for (;;) {
        idle_state_handle();
        if(peristat==1)
        {
        //for live data
        if(timer_call==1)
        {
         if(counter<200)
            {
                       if(BLE_GATTS_EVT_SYS_ATTR_MISSING)
                       {
                       err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0,0);
                       APP_ERROR_CHECK(err_code);
                       }
    
    
                        NRF_LOG_INFO("%d",counter);
                        sprintf(data_array2,"{\"g_x\":%d,\"g_y\":%d,\"g_z\":%d,\"a_x\":%d,\"a_y\":%d,\"a_z\":%d,\"m_x\":%d,\"m_y\":%d,\"m_z\":%d,\"lat\":%d,\"lon\":%d,\"alt\":%d,\"hb\":%d}",gyrox,gyroy,gyroz,accelx,accely,accelz,magx,magy,magz,lat,lon,alt,heart_rate);
                        NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                        NRF_LOG_HEXDUMP_DEBUG(data_array2, 1);
    
                        do
                        {
                            uint16_t length = (uint16_t)135;
                            err_code = ble_nus_data_send(&m_nus, data_array2, &length, m_conn_handle);
                           
                            
                            
                            if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                (err_code != NRF_ERROR_BUSY) &&
                                (err_code != NRF_ERROR_NOT_FOUND))
                            {
                              NRF_LOG_INFO("%d",err_code);
                                
                               APP_ERROR_CHECK(err_code);
                            }
                        } while (err_code == NRF_ERROR_BUSY);
                        //index = 0;
                        nrf_delay_ms(100);
                        NRF_LOG_INFO("done");
                          gyrox++;
                          gyroy++;
                          gyroz++;
                          accelx++;
                          accely++;
                          accelz++;
                          magx++;
                          magy++;
                          magz++;
                          counter++;
                          lon++;
                          lat++;
                          alt++;
                          }
        }
        }
    
    }
    
      //while(1)
      //{
    
      //if(button_pressed)
      //{
    
      //if(timer_call==1)
      //{
      ////write code
      //ff_result = f_open(&file, FILE_NAME, FA_READ | FA_WRITE | FA_OPEN_APPEND);
      //if (ff_result != FR_OK)
      //{
      //    NRF_LOG_INFO("Unable to open or create file: " FILE_NAME ".");
      //}
      //if(first_row==1)
      //{
      //ff_result = f_write(&file, init , sizeof(init), (UINT *) &bytes_written);
      //if (ff_result != FR_OK)
      //{
      //    NRF_LOG_INFO("read failed\r\n.");
      //}
      //ff_result = f_write(&file, "\n",1,&bytes_written);
      //first_row=0;
      //}
      // for (int b=1 ;b<=14;b++)
      //{
      //if(b==13)
      //{
      //itoa(heart_rate,s_heartrate,10);
      //ff_result = f_write(&file, s_heartrate, sizeof(s_heartrate), (UINT *) &bytes_written);
      //}
      //else
      //{
      //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written);
    
      //if (ff_result != FR_OK)
      //{
      //    NRF_LOG_INFO("Write failed\r\n.");
      //}
      //else
      //{
      //   // NRF_LOG_INFO("%d bytes written.", bytes_written);
      //}
      //}
      //ff_result = f_write(&file, ",",1,&bytes_written);
      //}
      //ff_result = f_write(&file, "\n",1,&bytes_written);
      //timer_call=0;
      //(void) f_close(&file);
      ////nrf_delay_ms(100);
      //}
    
      //   //idle_state_handle();
      //   //bsp_board_led_invert(3);
      //}
      //}// if(button_pressed)
    
      // uint32_t time_ms = 100; //Time(in miliseconds) between consecutive compare events.
      //uint32_t time_ticks ;
      // uint32_t err_code = NRF_SUCCESS;
      //bsp_board_init(BSP_INIT_LEDS);
      // uint32_t time_ms2 ;
    
      // nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    
      // NRF_LOG_INFO("FATFS example started.");
    
      // fatfs_example();
    
      // err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler);
      // APP_ERROR_CHECK(err_code);
    }

    So basically thats my code sorry for last one  . In this code when i try to test the same code it works well but when i try to reduce timer delay or nrf_Delay on 1601 line then its giving me error 

    <error> app: ERROR 19 [NRF_ERROR_RESOURCES] at D:\nrf5\nRF5_SDK_17.0.2_d674dde\examples\ble_central\ble_app_hrs_c\main.c:1597
    PC at: 0x0002DB39

    Yes i have successfully include nus service in ble_hrs_c . 

    Basically i want to send data with good data rate but when i try to change delay then its giving me error . 

Related