want to achieve 1-2 Mbps through BLE.

I am working on project in which i want to read data from sd card and send it to mobile through BLE , I am using ble_nus_send to send data but when i decrease the delay then its giving me error 19 and when i increase delay then it is running smoothly .

Can i achieve something between 1-2 Mbps through ble_nus_Send or have to do with some other approach . 

Parents
  • Hello,

    ble_nus_send to send data but when i decrease the delay then its giving me error 19 and when i increase delay then it is running smoothly .

    Exactly which function is returning error 19?

    Can i achieve something between 1-2 Mbps through ble_nus_Send or have to do with some other approach . 

    Please see the SoftDevice throughput documentation for what parameters to use to achieve the highest throughputs.

    Best regards,
    Karl

  • ble_nus_data_send giving me error 19 . 

    Please have a look at my code , I am using ble_hrs_c code . /** * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** * @brief BLE Heart Rate Collector application main file. * * This file contains the source code for a sample heart rate collector. */ #include #include #include #include #include "bsp.h" #include "diskio_blkdev.h" #include "ff.h" #include "nrf.h" #include "nrf_block_dev_sdc.h" #include "nrf_delay.h" #include "nrf_drv_gpiote.h" #include "nrf_drv_timer.h" #include "app_uart.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "ble_nus.h" #include "nrf_ble_qwr.h" #include "app_error.h" #include "app_timer.h" #include "app_util.h" #include "ble.h" #include "ble_bas_c.h" #include "ble_conn_state.h" #include "ble_db_discovery.h" #include "ble_hci.h" #include "ble_hrs_c.h" #include "ble_srv_common.h" #include "bsp_btn_ble.h" #include "fds.h" #include "nordic_common.h" #include "nrf_ble_gatt.h" #include "nrf_ble_lesc.h" #include "nrf_ble_scan.h" #include "nrf_fstorage.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_pwr_mgmt.h" #include "nrf_sdh.h" #include "nrf_sdh_ble.h" #include "nrf_sdh_soc.h" #include "nrf_sdm.h" #include "peer_manager.h" #include "peer_manager_handler.h" #if defined(UART_PRESENT) #include "nrf_uart.h" #endif #if defined(UARTE_PRESENT) #include "nrf_uarte.h" #endif #define FILE_NAME "hr.CSV" #define TEST_STRING "SD card example." #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN #ifdef BSP_BUTTON_0 #define PIN_IN BSP_BUTTON_0 #endif #ifndef PIN_IN #error "Please indicate input pin" #endif #ifdef BSP_LED_1 #define PIN_OUT BSP_LED_1 #endif #ifndef PIN_OUT #error "Please indicate output pin" #endif /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); BLE_NUS_DEF(m_nus, 6); NRF_BLE_QWRS_DEF(m_qwr, 6); static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 18000 volatile uint8_t button_pressed = 0; volatile int timer_call = 0; FRESULT ff_result; static FIL file; uint16_t heart_rate; char s_heartrate[4]; volatile uint8_t c; uint32_t bytes_written; const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(1); #define SDC_SCK_PIN ARDUINO_13_PIN ///< SDC serial clock (SCK) pin. #define SDC_MOSI_PIN ARDUINO_11_PIN ///< SDC serial data in (DI) pin. #define SDC_MISO_PIN ARDUINO_12_PIN ///< SDC serial data out (DO) pin. #define SDC_CS_PIN ARDUINO_10_PIN ///< SDC chip select (CS) pin. #define MIN_CONN_INTERVAL (uint16_t)(MSEC_TO_UNITS(15, UNIT_1_25_MS)) #define MAX_CONN_INTERVAL (uint16_t)(MSEC_TO_UNITS(15, UNIT_1_25_MS)) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 #define DEVICE_NAME "nRF Relay" static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_SOC_OBSERVER_PRIO 1 /**< Applications' SoC observer priority. You shouldn't need to modify this value. */ #define LESC_DEBUG_MODE 0 /**< Set to 1 to use LESC debug keys, allows you to use a sniffer to inspect traffic. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 1 /**< LE Secure Connections enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size in octets. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size in octets. */ #define SCAN_DURATION_WITELIST 3000 /**< Duration of the scanning in units of 10 milliseconds. */ #define HART_RATE_SERVICE_UUID_IDX 0 #define TARGET_UUID BLE_UUID_HEART_RATE_SERVICE /**< Target device uuid that application is looking for. */ static uint16_t m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID; /**< Connection handle for the HRS central application */ static uint16_t m_conn_handle_rscs_c = BLE_CONN_HANDLE_INVALID; char init[] = "Long,Lat,Alt,Accelx,Accely,Accelz,GYROx,GYROy,GYROz,Magx,Magy,Magz,Heartrate,Bat % "; char data[] = "2221"; /**@brief Macro to unpack 16bit unsigned UUID from octet stream. */ #define UUID16_EXTRACT(DST, SRC) \ do { \ (*(DST)) = (SRC)[1]; \ (*(DST)) <<= 8; \ (*(DST)) |= (SRC)[0]; \ } while (0) NRF_BLE_GQ_DEF(m_ble_gatt_queue, /**< BLE GATT Queue instance. */ NRF_SDH_BLE_CENTRAL_LINK_COUNT, NRF_BLE_GQ_QUEUE_SIZE); BLE_HRS_C_DEF(m_hrs_c); /**< Structure used to identify the heart rate client module. */ BLE_BAS_C_DEF(m_bas_c); /**< Structure used to identify the Battery Service client module. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ BLE_DB_DISCOVERY_ARRAY_DEF(m_db_disc, 2); /**< Database discovery module instances. */ NRF_BLE_SCAN_DEF(m_scan); /**< DB discovery module instance. */ /**< Scanning module instance. */ static uint16_t m_conn_handle; /**< Current connection handle. */ static bool m_whitelist_disabled; /**< True if whitelist has been temporarily disabled. */ static bool m_memory_access_in_progress; /**< Flag to keep track of ongoing operations on persistent memory. */ void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { c = 1; } NRF_BLOCK_DEV_SDC_DEFINE( m_block_dev_sdc, NRF_BLOCK_DEV_SDC_CONFIG( SDC_SECTOR_SIZE, APP_SDCARD_CONFIG(SDC_MOSI_PIN, SDC_MISO_PIN, SDC_SCK_PIN, SDC_CS_PIN)), NFR_BLOCK_DEV_INFO_CONFIG("Nordic", "SDC", "1.00")); void timer_led_event_handler(nrf_timer_event_t event_type, void *p_context) { switch (event_type) { case NRF_TIMER_EVENT_COMPARE0: timer_call = 1; break; default: //Do nothing. break; } } static void fatfs_example() { static FATFS fs; static DIR dir; static FILINFO fno; DSTATUS disk_state = STA_NOINIT; // Initialize FATFS disk I/O interface by providing the block device. static diskio_blkdev_t drives[] = { DISKIO_BLOCKDEV_CONFIG(NRF_BLOCKDEV_BASE_ADDR(m_block_dev_sdc, block_dev), NULL)}; diskio_blockdev_register(drives, ARRAY_SIZE(drives)); NRF_LOG_INFO("Initializing disk 0 (SDC)..."); for (uint32_t retries = 3; retries && disk_state; --retries) { disk_state = disk_initialize(0); } if (disk_state) { NRF_LOG_INFO("Disk initialization failed."); return; } uint32_t blocks_per_mb = (1024uL * 1024uL) / m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_size; uint32_t capacity = m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_count / blocks_per_mb; NRF_LOG_INFO("Capacity: %d MB", capacity); NRF_LOG_INFO("Mounting volume..."); ff_result = f_mount(&fs, "", 1); if (ff_result) { NRF_LOG_INFO("Mount failed."); return; } NRF_LOG_INFO("\r\n Listing directory: /"); ff_result = f_opendir(&dir, "/"); if (ff_result) { NRF_LOG_INFO("Directory listing failed!"); return; } do { ff_result = f_readdir(&dir, &fno); if (ff_result != FR_OK) { NRF_LOG_INFO("Directory read failed."); return; } if (fno.fname[0]) { if (fno.fattrib & AM_DIR) { NRF_LOG_RAW_INFO(" %s", (uint32_t)fno.fname); } else { NRF_LOG_RAW_INFO("%9lu %s", fno.fsize, (uint32_t)fno.fname); } } } while (fno.fname[0]); NRF_LOG_RAW_INFO(""); uint8_t string[15]; NRF_LOG_INFO(string); NRF_LOG_INFO("Writing to file " FILE_NAME "..."); ff_result = f_open(&file, FILE_NAME, FA_READ); if (ff_result != FR_OK) { NRF_LOG_INFO("Unable to open or create file: " FILE_NAME "."); return; } uint16_t size; size = f_size(&file); char *data = NULL; data = malloc(size); /* allocate memory to store image data */ NRF_LOG_INFO("File size: %d bytes", size); int b = 86; for (int a = 85; a < size; a = a + 85) { //NRF_LOG_INFO("%d \n",a); //NRF_LOG_INFO("%d \n",b); f_lseek(&file, b); ff_result = f_read(&file, string, 85, (UINT *)&bytes_written); if (ff_result != FR_OK) { NRF_LOG_INFO("read failed\r\n."); } else { // NRF_LOG_INFO("%d bytes read.", bytes_written); } //for(int i=0;i<bytes_written;i++) //{ // NRF_LOG_INFO("%d -> %c",i,string[i]); //nrf_delay_ms(20); //} b = b + 85; } NRF_LOG_INFO("done"); (void)f_close(&file); //ff_result = f_write(&file, string, sizeof(string), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //(void) f_close(&file); //for(int a=1 ; a<=600 ; a++) //{ //for (int b=1 ;b<=14;b++) //{ //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //ff_result = f_write(&file, ",",1,&bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //nrf_delay_ms(60); //} } /**< Scan parameters requested for scanning and connection. */ static ble_gap_scan_params_t const m_scan_param = { .active = 0x01, #if (NRF_SD_BLE_API_VERSION > 7) .interval_us = NRF_BLE_SCAN_SCAN_INTERVAL * UNIT_0_625_MS, .window_us = NRF_BLE_SCAN_SCAN_WINDOW * UNIT_0_625_MS, #else .interval = NRF_BLE_SCAN_SCAN_INTERVAL, .window = NRF_BLE_SCAN_SCAN_WINDOW, #endif .filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL, .timeout = SCAN_DURATION_WITELIST, .scan_phys = BLE_GAP_PHY_1MBPS, .extended = true, }; /**@brief Names which the central applications will scan for, and which will be advertised by the peripherals. * if these are set to empty strings, the UUIDs defined below will be used */ static char const m_target_periph_name[] = ""; /**< If you want to connect to a peripheral using a given advertising name, type its name here. */ static bool is_connect_per_addr = true; /**< If you want to connect to a peripheral with a given address, set this to true and put the correct address in the variable below. */ static ble_gap_addr_t const m_target_periph_addr = { /* Possible values for addr_type: BLE_GAP_ADDR_TYPE_PUBLIC, BLE_GAP_ADDR_TYPE_RANDOM_STATIC, BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE, BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE. */ .addr_type = BLE_GAP_ADDR_TYPE_RANDOM_STATIC, .addr = {0x8D, 0xFE, 0x23, 0x86, 0x77, 0xD9}}; static void scan_start(void); /**@brief Function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t *p_file_name) { app_error_handler(0xDEADBEEF, line_num, p_file_name); } /**@brief Function for handling the Heart Rate Service Client and Battery Service Client errors. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void service_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling database discovery events. * * @details This function is callback function to handle events from the database discovery module. * Depending on the UUIDs that are discovered, this function should forward the events * to their respective services. * * @param[in] p_event Pointer to the database discovery event. */ static void db_disc_handler(ble_db_discovery_evt_t *p_evt) { ble_hrs_on_db_disc_evt(&m_hrs_c, p_evt); ble_bas_on_db_disc_evt(&m_bas_c, p_evt); } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void adv_scan_start(void) { ret_code_t err_code; //check if there are no flash operations in progress if (!nrf_fstorage_is_busy(NULL)) { // Start scanning for peripherals and initiate connection to devices which // advertise Heart Rate or Running speed and cadence UUIDs. scan_start(); // Turn on the LED to signal scanning. bsp_board_led_on(BSP_BOARD_LED_0); // Start advertising. err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } } static void pm_evt_handler(pm_evt_t const *p_evt) { pm_handler_on_pm_evt(p_evt); pm_handler_disconnect_on_sec_failure(p_evt); pm_handler_flash_clean(p_evt); switch (p_evt->evt_id) { case PM_EVT_PEERS_DELETE_SUCCEEDED: // Bonds are deleted. Start scanning. adv_scan_start(); break; default: break; } } /** * @brief Function for shutdown events. * * @param[in] event Shutdown type. */ static bool shutdown_handler(nrf_pwr_mgmt_evt_t event) { ret_code_t err_code; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); switch (event) { case NRF_PWR_MGMT_EVT_PREPARE_WAKEUP: // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); break; default: break; } return true; } NRF_PWR_MGMT_HANDLER_REGISTER(shutdown_handler, APP_SHUTDOWN_HANDLER_PRIORITY); /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void multi_qwr_conn_handle_assign(uint16_t conn_handle) { for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) { if (m_qwr[i].conn_handle == BLE_CONN_HANDLE_INVALID) { ret_code_t err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr[i], conn_handle); APP_ERROR_CHECK(err_code); break; } } } volatile uint8_t peristat=0; static void on_ble_peripheral_evt(ble_evt_t const *p_ble_evt) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("peripheral Connected"); nrf_delay_ms(20); peristat=1; err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; multi_qwr_conn_handle_assign(p_ble_evt->evt.gap_evt.conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); peristat=0; // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } static void on_ble_central_evt(ble_evt_t const *p_ble_evt) { ret_code_t err_code; ble_gap_evt_t const *p_gap_evt = &p_ble_evt->evt.gap_evt; switch (p_ble_evt->header.evt_id) { // Upon connection, check which peripheral is connected (HR or RSC), initiate DB // discovery, update LEDs status, and resume scanning, if necessary. case BLE_GAP_EVT_CONNECTED: { NRF_LOG_INFO("Central connected"); // If no Heart Rate sensor or RSC sensor is currently connected, try to find them on this peripheral. if ((m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID)) { NRF_LOG_INFO("Attempt to find HRS or RSC on conn_handle 0x%x", p_gap_evt->conn_handle); err_code = ble_db_discovery_start(&m_db_disc[0], p_gap_evt->conn_handle); if (err_code == NRF_ERROR_BUSY) { err_code = ble_db_discovery_start(&m_db_disc[1], p_gap_evt->conn_handle); APP_ERROR_CHECK(err_code); } else { APP_ERROR_CHECK(err_code); } } // Assign connection handle to the QWR module. multi_qwr_conn_handle_assign(p_gap_evt->conn_handle); // Update LEDs status, and check whether to look for more peripherals to connect to. bsp_board_led_on(BSP_BOARD_LED_1); if (ble_conn_state_central_conn_count() == NRF_SDH_BLE_CENTRAL_LINK_COUNT) { bsp_board_led_off(BSP_BOARD_LED_0); } else { // Resume scanning. bsp_board_led_on(BSP_BOARD_LED_0); scan_start(); } } break; // BLE_GAP_EVT_CONNECTED // Upon disconnection, reset the connection handle of the peer that disconnected, // update the LEDs status and start scanning again. case BLE_GAP_EVT_DISCONNECTED: { if (p_gap_evt->conn_handle == m_conn_handle_hrs_c) { NRF_LOG_INFO("HRS central disconnected (reason: %d)", p_gap_evt->params.disconnected.reason); m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID; err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &m_adv_uuids[HART_RATE_SERVICE_UUID_IDX]); APP_ERROR_CHECK(err_code); } if ((m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID)) { // Start scanning. scan_start(); // Update LEDs status. bsp_board_led_on(BSP_BOARD_LED_0); } if (ble_conn_state_central_conn_count() == 0) { bsp_board_led_off(BSP_BOARD_LED_1); } } break; // BLE_GAP_EVT_DISCONNECTED case BLE_GAP_EVT_TIMEOUT: { // No timeout for scanning is specified, so only connection attemps can timeout. if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN) { NRF_LOG_INFO("Connection Request timed out."); } } break; case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST: { // Accept parameters requested by peer. err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle, &p_gap_evt->params.conn_param_update_request.conn_params); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for handling BLE events from peripheral applications. * @details Updates the status LEDs used to report the activity of the peripheral applications. * * @param[in] p_ble_evt Bluetooth stack event. */ static bool ble_evt_is_advertising_timeout(ble_evt_t const *p_ble_evt) { return (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_SET_TERMINATED); } static void ble_evt_handler(ble_evt_t const *p_ble_evt, void *p_context) { uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle; uint16_t role = ble_conn_state_role(conn_handle); // Based on the role this device plays in the connection, dispatch to the right handler. if (role == BLE_GAP_ROLE_PERIPH || ble_evt_is_advertising_timeout(p_ble_evt)) { //ble_hrs_on_ble_evt(p_ble_evt, &m_hrs); ble_nus_on_ble_evt(p_ble_evt, &m_nus); on_ble_peripheral_evt(p_ble_evt); } else if ((role == BLE_GAP_ROLE_CENTRAL) || (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_REPORT)) { ble_hrs_c_on_ble_evt(p_ble_evt, &m_hrs_c); //ble_nus_on_ble_evt(p_ble_evt,&m_nus); on_ble_central_evt(p_ble_evt); } } /**@brief SoftDevice SoC event handler. * * @param[in] evt_id SoC event. * @param[in] p_context Context. */ static void soc_evt_handler(uint32_t evt_id, void *p_context) { switch (evt_id) { case NRF_EVT_FLASH_OPERATION_SUCCESS: /* fall through */ case NRF_EVT_FLASH_OPERATION_ERROR: if (m_memory_access_in_progress) { m_memory_access_in_progress = false; scan_start(); } break; default: // No implementation needed. break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); NRF_LOG_INFO("%d", err_code); APP_ERROR_CHECK(err_code); // Register handlers for BLE and SoC events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); NRF_SDH_SOC_OBSERVER(m_soc_observer, APP_SOC_OBSERVER_PRIO, soc_evt_handler, NULL); } /**@brief Function for the Peer Manager initialization. */ static void peer_manager_init(void) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /** @brief Clear bonding information from persistent storage */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for disabling the use of whitelist for scanning. */ static void whitelist_disable(void) { if (!m_whitelist_disabled) { NRF_LOG_INFO("Whitelist temporarily disabled."); m_whitelist_disabled = true; nrf_ble_scan_stop(); scan_start(); } } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { ret_code_t err_code; switch (event) { case BSP_EVENT_SLEEP: nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: whitelist_disable(); break; default: break; } } /**@brief Heart Rate Collector Handler. */ static void hrs_c_evt_handler(ble_hrs_c_t *p_hrs_c, ble_hrs_c_evt_t *p_hrs_c_evt) { NRF_LOG_INFO("hrs_c_evt_handler"); ret_code_t err_code; switch (p_hrs_c_evt->evt_type) { case BLE_HRS_C_EVT_DISCOVERY_COMPLETE: { NRF_LOG_DEBUG("Heart rate service discovered."); err_code = ble_hrs_c_handles_assign(p_hrs_c, p_hrs_c_evt->conn_handle, &p_hrs_c_evt->params.peer_db); APP_ERROR_CHECK(err_code); // Initiate bonding. err_code = pm_conn_secure(p_hrs_c_evt->conn_handle, false); if (err_code != NRF_ERROR_BUSY) { APP_ERROR_CHECK(err_code); } // Heart rate service discovered. Enable notification of Heart Rate Measurement. err_code = ble_hrs_c_hrm_notif_enable(p_hrs_c); APP_ERROR_CHECK(err_code); } break; case BLE_HRS_C_EVT_HRM_NOTIFICATION: { NRF_LOG_INFO("Heart Rate = %d.", p_hrs_c_evt->params.hrm.hr_value); heart_rate = p_hrs_c_evt->params.hrm.hr_value; if (p_hrs_c_evt->params.hrm.rr_intervals_cnt != 0) { uint32_t rr_avg = 0; for (uint32_t i = 0; i < p_hrs_c_evt->params.hrm.rr_intervals_cnt; i++) { rr_avg += p_hrs_c_evt->params.hrm.rr_intervals[i]; } rr_avg = rr_avg / p_hrs_c_evt->params.hrm.rr_intervals_cnt; NRF_LOG_DEBUG("rr_interval (avg) = %d.", rr_avg); } } break; default: break; } } /**@brief Battery level Collector Handler. */ static void bas_c_evt_handler(ble_bas_c_t *p_bas_c, ble_bas_c_evt_t *p_bas_c_evt) { NRF_LOG_INFO("bas_c_evt_handler"); ret_code_t err_code; switch (p_bas_c_evt->evt_type) { case BLE_BAS_C_EVT_DISCOVERY_COMPLETE: { err_code = ble_bas_c_handles_assign(p_bas_c, p_bas_c_evt->conn_handle, &p_bas_c_evt->params.bas_db); APP_ERROR_CHECK(err_code); // Battery service discovered. Enable notification of Battery Level. NRF_LOG_DEBUG("Battery Service discovered. Reading battery level."); err_code = ble_bas_c_bl_read(p_bas_c); APP_ERROR_CHECK(err_code); NRF_LOG_DEBUG("Enabling Battery Level Notification."); err_code = ble_bas_c_bl_notif_enable(p_bas_c); APP_ERROR_CHECK(err_code); } break; case BLE_BAS_C_EVT_BATT_NOTIFICATION: NRF_LOG_INFO("Battery Level received %d %%.", p_bas_c_evt->params.battery_level); break; case BLE_BAS_C_EVT_BATT_READ_RESP: NRF_LOG_INFO("Battery Level Read as %d %%.", p_bas_c_evt->params.battery_level); break; default: break; } } /** * @brief Heart rate collector initialization. */ static void hrs_c_init(void) { NRF_LOG_INFO("HRS_C_INIT"); ble_hrs_c_init_t hrs_c_init_obj; hrs_c_init_obj.evt_handler = hrs_c_evt_handler; hrs_c_init_obj.error_handler = service_error_handler; hrs_c_init_obj.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_hrs_c_init(&m_hrs_c, &hrs_c_init_obj); APP_ERROR_CHECK(err_code); } /** * @brief Battery level collector initialization. */ static void bas_c_init(void) { NRF_LOG_INFO("BAS_C_INIT"); ble_bas_c_init_t bas_c_init_obj; bas_c_init_obj.evt_handler = bas_c_evt_handler; bas_c_init_obj.error_handler = service_error_handler; bas_c_init_obj.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_bas_c_init(&m_bas_c, &bas_c_init_obj); APP_ERROR_CHECK(err_code); } /** * @brief Database discovery collector initialization. */ static void db_discovery_init(void) { ble_db_discovery_init_t db_init; memset(&db_init, 0, sizeof(db_init)); db_init.evt_handler = db_disc_handler; db_init.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_db_discovery_init(&db_init); APP_ERROR_CHECK(err_code); } /**@brief Retrieve a list of peer manager peer IDs. * * @param[inout] p_peers The buffer where to store the list of peer IDs. * @param[inout] p_size In: The size of the @p p_peers buffer. * Out: The number of peers copied in the buffer. */ static void peer_list_get(pm_peer_id_t *p_peers, uint32_t *p_size) { pm_peer_id_t peer_id; uint32_t peers_to_copy; peers_to_copy = (*p_size < BLE_GAP_WHITELIST_ADDR_MAX_COUNT) ? *p_size : BLE_GAP_WHITELIST_ADDR_MAX_COUNT; peer_id = pm_next_peer_id_get(PM_PEER_ID_INVALID); *p_size = 0; while ((peer_id != PM_PEER_ID_INVALID) && (peers_to_copy--)) { p_peers[(*p_size)++] = peer_id; peer_id = pm_next_peer_id_get(peer_id); } } /**@brief Function to start scanning. */ static void scan_start(void) { ret_code_t err_code; if (nrf_fstorage_is_busy(NULL)) { m_memory_access_in_progress = true; return; } NRF_LOG_INFO("Starting scan."); err_code = nrf_ble_scan_start(&m_scan); APP_ERROR_CHECK(err_code); err_code = bsp_indication_set(BSP_INDICATE_SCANNING); NRF_LOG_INFO("%d", err_code); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool *p_erase_bonds) { ret_code_t err_code; bsp_event_t startup_event; err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing the power management module. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief GATT module event handler. */ static void gatt_evt_handler(nrf_ble_gatt_t *p_gatt, nrf_ble_gatt_evt_t const *p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); switch (p_evt->evt_id) { case NRF_BLE_GATT_EVT_ATT_MTU_UPDATED: { NRF_LOG_INFO("GATT ATT MTU on connection 0x%x changed to %d.", p_evt->conn_handle, p_evt->params.att_mtu_effective); } break; case NRF_BLE_GATT_EVT_DATA_LENGTH_UPDATED: { NRF_LOG_INFO("Data length for connection 0x%x updated to %d.", p_evt->conn_handle, p_evt->params.data_length); } break; default: break; } } static void whitelist_load() { ret_code_t ret; pm_peer_id_t peers[8]; uint32_t peer_cnt; memset(peers, PM_PEER_ID_INVALID, sizeof(peers)); peer_cnt = (sizeof(peers) / sizeof(pm_peer_id_t)); // Load all peers from flash and whitelist them. peer_list_get(peers, &peer_cnt); ret = pm_whitelist_set(peers, peer_cnt); APP_ERROR_CHECK(ret); // Setup the device identies list. // Some SoftDevices do not support this feature. ret = pm_device_identities_list_set(peers, peer_cnt); if (ret != NRF_ERROR_NOT_SUPPORTED) { APP_ERROR_CHECK(ret); } } static void on_whitelist_req(void) { ret_code_t err_code; // Whitelist buffers. ble_gap_addr_t whitelist_addrs[8]; ble_gap_irk_t whitelist_irks[8]; memset(whitelist_addrs, 0x00, sizeof(whitelist_addrs)); memset(whitelist_irks, 0x00, sizeof(whitelist_irks)); uint32_t addr_cnt = (sizeof(whitelist_addrs) / sizeof(ble_gap_addr_t)); uint32_t irk_cnt = (sizeof(whitelist_irks) / sizeof(ble_gap_irk_t)); // Reload the whitelist and whitelist all peers. whitelist_load(); // Get the whitelist previously set using pm_whitelist_set(). err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt, whitelist_irks, &irk_cnt); if (((addr_cnt == 0) && (irk_cnt == 0)) || (m_whitelist_disabled)) { // Don't use whitelist. err_code = nrf_ble_scan_params_set(&m_scan, NULL); APP_ERROR_CHECK(err_code); } } static void scan_evt_handler(scan_evt_t const *p_scan_evt) { ret_code_t err_code; switch(p_scan_evt->scan_evt_id) { case NRF_BLE_SCAN_EVT_WHITELIST_REQUEST: { on_whitelist_req(); m_whitelist_disabled = false; } break; case NRF_BLE_SCAN_EVT_CONNECTING_ERROR: { err_code = p_scan_evt->params.connecting_err.err_code; APP_ERROR_CHECK(err_code); } break; case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT: { NRF_LOG_INFO("Scan timed out."); scan_start(); } break; case NRF_BLE_SCAN_EVT_FILTER_MATCH: break; case NRF_BLE_SCAN_EVT_WHITELIST_ADV_REPORT: break; default: break; } } /**@brief Function for initializing the timer. */ static void timer_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the GATT module. */ static void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for initialization scanning and setting filters. */ static void scan_init(void) { ret_code_t err_code; nrf_ble_scan_init_t init_scan; memset(&init_scan, 0, sizeof(init_scan)); init_scan.p_scan_param = &m_scan_param; init_scan.connect_if_match = true; init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG; err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler); APP_ERROR_CHECK(err_code); ble_uuid_t uuid = { .uuid = TARGET_UUID, .type = BLE_UUID_TYPE_BLE, }; err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &uuid); APP_ERROR_CHECK(err_code); if (strlen(m_target_periph_name) != 0) { err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_NAME_FILTER, m_target_periph_name); APP_ERROR_CHECK(err_code); } if (is_connect_per_addr) { err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_ADDR_FILTER, m_target_periph_addr.addr); APP_ERROR_CHECK(err_code); } err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_ALL_FILTER, false); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details Handle any pending log operation(s), then sleep until the next event occurs. */ static void idle_state_handle(void) { ret_code_t err_code; err_code = nrf_ble_lesc_request_handler(); APP_ERROR_CHECK(err_code); NRF_LOG_FLUSH(); nrf_pwr_mgmt_run(); } /**@brief Function for starting a scan, or instead trigger it from peer manager (after * deleting bonds). * * @param[in] p_erase_bonds Pointer to a bool to determine if bonds will be deleted before scanning. */ void scanning_start(bool *p_erase_bonds) { // Start scanning for peripherals and initiate connection // with devices that advertise GATT Service UUID. if (*p_erase_bonds == true) { // Scan is started by the PM_EVT_PEERS_DELETE_SUCCEEDED event. delete_bonds(); } else { scan_start(); } } static void gpio_init(void) { ret_code_t err_code; NRF_LOG_INFO("INIT gpio"); nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(false); err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config); APP_ERROR_CHECK(err_code); nrf_drv_gpiote_in_event_enable(PIN_IN, true); } static void gap_params_init(void) { ret_code_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = m_scan.conn_params.min_conn_interval; gap_conn_params.max_conn_interval = m_scan.conn_params.max_conn_interval; gap_conn_params.slave_latency = m_scan.conn_params.slave_latency; gap_conn_params.conn_sup_timeout = m_scan.conn_params.conn_sup_timeout; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } static void on_conn_params_evt(ble_conn_params_evt_t *p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } void uart_event_handle(app_uart_evt_t *p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: NRF_LOG_INFO("uart event handle"); UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (data_array[index - 1] == '\r') || (index >= m_ble_nus_max_data_len)) { if (index > 1) { NRF_LOG_INFO("uart send handle"); NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); NRF_LOG_INFO("%d", err_code); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined(UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } static void nus_data_handler(ble_nus_evt_t *p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; nrf_delay_ms(10); NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_INFO("rom BLE NUS. "); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { NRF_LOG_INFO("1 "); do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY) ; } } } static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) { err_code = nrf_ble_qwr_init(&m_qwr[i], &qwr_init); APP_ERROR_CHECK(err_code); } // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } static void advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } uint8_t gyrox=0; uint8_t gyroy=0; uint8_t gyroz=0; uint8_t accelx=1,accely=1,accelz=1; uint8_t magx=2,magy=2,magz=2; uint8_t counter=0; static uint8_t data_array2[150]; int main(void) { bool erase_bonds; uint32_t time_ms = 100; //Time(in miliseconds) between consecutive compare events. uint32_t time_ticks; uint8_t gyrox=0; uint8_t gyroy=1; uint8_t gyroz=2; uint8_t accelx=3,accely=4,accelz=5; uint8_t magx=2,magy=2,magz=2; uint8_t counter=0; uint8_t lat=6,lon=7,alt=8; static uint8_t data_array2[135]; uint32_t err_code = NRF_SUCCESS; uart_init(); log_init(); timer_init(); power_management_init(); buttons_leds_init(&erase_bonds); ble_stack_init(); gatt_init(); peer_manager_init(); db_discovery_init(); hrs_c_init(); bas_c_init(); scan_init(); gap_params_init(); services_init(); advertising_init(); conn_params_init(); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler); APP_ERROR_CHECK(err_code); time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms); nrf_drv_timer_extended_compare(&TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); nrf_drv_timer_enable(&TIMER_LED); gpio_init(); // advertising_start(); //// Start execution. NRF_LOG_INFO("Heart Rate collector example started."); // fatfs_example(); //NRF_LOG_INFO("1"); //Enter main loop. int first_row = 1; if (erase_bonds == true) { // Scanning and advertising is done upon PM_EVT_PEERS_DELETE_SUCCEEDED event. delete_bonds(); } else { adv_scan_start(); } nrf_delay_ms(5000); // Enter main loop. for (;;) { idle_state_handle(); if(peristat==1) { //for live data if(timer_call==1) { if(counter<200) { if(BLE_GATTS_EVT_SYS_ATTR_MISSING) { err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0,0); APP_ERROR_CHECK(err_code); } NRF_LOG_INFO("%d",counter); sprintf(data_array2,"{\"g_x\":%d,\"g_y\":%d,\"g_z\":%d,\"a_x\":%d,\"a_y\":%d,\"a_z\":%d,\"m_x\":%d,\"m_y\":%d,\"m_z\":%d,\"lat\":%d,\"lon\":%d,\"alt\":%d,\"hb\":%d}",gyrox,gyroy,gyroz,accelx,accely,accelz,magx,magy,magz,lat,lon,alt,heart_rate); NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array2, 1); do { uint16_t length = (uint16_t)135; err_code = ble_nus_data_send(&m_nus, data_array2, &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_NOT_FOUND)) { NRF_LOG_INFO("%d",err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); //index = 0; nrf_delay_ms(50); NRF_LOG_INFO("done"); gyrox++; gyroy++; gyroz++; accelx++; accely++; accelz++; magx++; magy++; magz++; counter++; lon++; lat++; alt++; } } } } //while(1) //{ //if(button_pressed) //{ //if(timer_call==1) //{ ////write code //ff_result = f_open(&file, FILE_NAME, FA_READ | FA_WRITE | FA_OPEN_APPEND); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Unable to open or create file: " FILE_NAME "."); //} //if(first_row==1) //{ //ff_result = f_write(&file, init , sizeof(init), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("read failed\r\n."); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //first_row=0; //} // for (int b=1 ;b<=14;b++) //{ //if(b==13) //{ //itoa(heart_rate,s_heartrate,10); //ff_result = f_write(&file, s_heartrate, sizeof(s_heartrate), (UINT *) &bytes_written); //} //else //{ //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //} //ff_result = f_write(&file, ",",1,&bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //timer_call=0; //(void) f_close(&file); ////nrf_delay_ms(100); //} // //idle_state_handle(); // //bsp_board_led_invert(3); //} //}// if(button_pressed) // uint32_t time_ms = 100; //Time(in miliseconds) between consecutive compare events. //uint32_t time_ticks ; // uint32_t err_code = NRF_SUCCESS; //bsp_board_init(BSP_INIT_LEDS); // uint32_t time_ms2 ; // nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; // NRF_LOG_INFO("FATFS example started."); // fatfs_example(); // err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler); // APP_ERROR_CHECK(err_code); }

Reply
  • ble_nus_data_send giving me error 19 . 

    Please have a look at my code , I am using ble_hrs_c code . /** * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** * @brief BLE Heart Rate Collector application main file. * * This file contains the source code for a sample heart rate collector. */ #include #include #include #include #include "bsp.h" #include "diskio_blkdev.h" #include "ff.h" #include "nrf.h" #include "nrf_block_dev_sdc.h" #include "nrf_delay.h" #include "nrf_drv_gpiote.h" #include "nrf_drv_timer.h" #include "app_uart.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "ble_nus.h" #include "nrf_ble_qwr.h" #include "app_error.h" #include "app_timer.h" #include "app_util.h" #include "ble.h" #include "ble_bas_c.h" #include "ble_conn_state.h" #include "ble_db_discovery.h" #include "ble_hci.h" #include "ble_hrs_c.h" #include "ble_srv_common.h" #include "bsp_btn_ble.h" #include "fds.h" #include "nordic_common.h" #include "nrf_ble_gatt.h" #include "nrf_ble_lesc.h" #include "nrf_ble_scan.h" #include "nrf_fstorage.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_pwr_mgmt.h" #include "nrf_sdh.h" #include "nrf_sdh_ble.h" #include "nrf_sdh_soc.h" #include "nrf_sdm.h" #include "peer_manager.h" #include "peer_manager_handler.h" #if defined(UART_PRESENT) #include "nrf_uart.h" #endif #if defined(UARTE_PRESENT) #include "nrf_uarte.h" #endif #define FILE_NAME "hr.CSV" #define TEST_STRING "SD card example." #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN #ifdef BSP_BUTTON_0 #define PIN_IN BSP_BUTTON_0 #endif #ifndef PIN_IN #error "Please indicate input pin" #endif #ifdef BSP_LED_1 #define PIN_OUT BSP_LED_1 #endif #ifndef PIN_OUT #error "Please indicate output pin" #endif /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); BLE_NUS_DEF(m_nus, 6); NRF_BLE_QWRS_DEF(m_qwr, 6); static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 18000 volatile uint8_t button_pressed = 0; volatile int timer_call = 0; FRESULT ff_result; static FIL file; uint16_t heart_rate; char s_heartrate[4]; volatile uint8_t c; uint32_t bytes_written; const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(1); #define SDC_SCK_PIN ARDUINO_13_PIN ///< SDC serial clock (SCK) pin. #define SDC_MOSI_PIN ARDUINO_11_PIN ///< SDC serial data in (DI) pin. #define SDC_MISO_PIN ARDUINO_12_PIN ///< SDC serial data out (DO) pin. #define SDC_CS_PIN ARDUINO_10_PIN ///< SDC chip select (CS) pin. #define MIN_CONN_INTERVAL (uint16_t)(MSEC_TO_UNITS(15, UNIT_1_25_MS)) #define MAX_CONN_INTERVAL (uint16_t)(MSEC_TO_UNITS(15, UNIT_1_25_MS)) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 #define DEVICE_NAME "nRF Relay" static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_SOC_OBSERVER_PRIO 1 /**< Applications' SoC observer priority. You shouldn't need to modify this value. */ #define LESC_DEBUG_MODE 0 /**< Set to 1 to use LESC debug keys, allows you to use a sniffer to inspect traffic. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 1 /**< LE Secure Connections enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size in octets. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size in octets. */ #define SCAN_DURATION_WITELIST 3000 /**< Duration of the scanning in units of 10 milliseconds. */ #define HART_RATE_SERVICE_UUID_IDX 0 #define TARGET_UUID BLE_UUID_HEART_RATE_SERVICE /**< Target device uuid that application is looking for. */ static uint16_t m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID; /**< Connection handle for the HRS central application */ static uint16_t m_conn_handle_rscs_c = BLE_CONN_HANDLE_INVALID; char init[] = "Long,Lat,Alt,Accelx,Accely,Accelz,GYROx,GYROy,GYROz,Magx,Magy,Magz,Heartrate,Bat % "; char data[] = "2221"; /**@brief Macro to unpack 16bit unsigned UUID from octet stream. */ #define UUID16_EXTRACT(DST, SRC) \ do { \ (*(DST)) = (SRC)[1]; \ (*(DST)) <<= 8; \ (*(DST)) |= (SRC)[0]; \ } while (0) NRF_BLE_GQ_DEF(m_ble_gatt_queue, /**< BLE GATT Queue instance. */ NRF_SDH_BLE_CENTRAL_LINK_COUNT, NRF_BLE_GQ_QUEUE_SIZE); BLE_HRS_C_DEF(m_hrs_c); /**< Structure used to identify the heart rate client module. */ BLE_BAS_C_DEF(m_bas_c); /**< Structure used to identify the Battery Service client module. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ BLE_DB_DISCOVERY_ARRAY_DEF(m_db_disc, 2); /**< Database discovery module instances. */ NRF_BLE_SCAN_DEF(m_scan); /**< DB discovery module instance. */ /**< Scanning module instance. */ static uint16_t m_conn_handle; /**< Current connection handle. */ static bool m_whitelist_disabled; /**< True if whitelist has been temporarily disabled. */ static bool m_memory_access_in_progress; /**< Flag to keep track of ongoing operations on persistent memory. */ void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { c = 1; } NRF_BLOCK_DEV_SDC_DEFINE( m_block_dev_sdc, NRF_BLOCK_DEV_SDC_CONFIG( SDC_SECTOR_SIZE, APP_SDCARD_CONFIG(SDC_MOSI_PIN, SDC_MISO_PIN, SDC_SCK_PIN, SDC_CS_PIN)), NFR_BLOCK_DEV_INFO_CONFIG("Nordic", "SDC", "1.00")); void timer_led_event_handler(nrf_timer_event_t event_type, void *p_context) { switch (event_type) { case NRF_TIMER_EVENT_COMPARE0: timer_call = 1; break; default: //Do nothing. break; } } static void fatfs_example() { static FATFS fs; static DIR dir; static FILINFO fno; DSTATUS disk_state = STA_NOINIT; // Initialize FATFS disk I/O interface by providing the block device. static diskio_blkdev_t drives[] = { DISKIO_BLOCKDEV_CONFIG(NRF_BLOCKDEV_BASE_ADDR(m_block_dev_sdc, block_dev), NULL)}; diskio_blockdev_register(drives, ARRAY_SIZE(drives)); NRF_LOG_INFO("Initializing disk 0 (SDC)..."); for (uint32_t retries = 3; retries && disk_state; --retries) { disk_state = disk_initialize(0); } if (disk_state) { NRF_LOG_INFO("Disk initialization failed."); return; } uint32_t blocks_per_mb = (1024uL * 1024uL) / m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_size; uint32_t capacity = m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_count / blocks_per_mb; NRF_LOG_INFO("Capacity: %d MB", capacity); NRF_LOG_INFO("Mounting volume..."); ff_result = f_mount(&fs, "", 1); if (ff_result) { NRF_LOG_INFO("Mount failed."); return; } NRF_LOG_INFO("\r\n Listing directory: /"); ff_result = f_opendir(&dir, "/"); if (ff_result) { NRF_LOG_INFO("Directory listing failed!"); return; } do { ff_result = f_readdir(&dir, &fno); if (ff_result != FR_OK) { NRF_LOG_INFO("Directory read failed."); return; } if (fno.fname[0]) { if (fno.fattrib & AM_DIR) { NRF_LOG_RAW_INFO(" %s", (uint32_t)fno.fname); } else { NRF_LOG_RAW_INFO("%9lu %s", fno.fsize, (uint32_t)fno.fname); } } } while (fno.fname[0]); NRF_LOG_RAW_INFO(""); uint8_t string[15]; NRF_LOG_INFO(string); NRF_LOG_INFO("Writing to file " FILE_NAME "..."); ff_result = f_open(&file, FILE_NAME, FA_READ); if (ff_result != FR_OK) { NRF_LOG_INFO("Unable to open or create file: " FILE_NAME "."); return; } uint16_t size; size = f_size(&file); char *data = NULL; data = malloc(size); /* allocate memory to store image data */ NRF_LOG_INFO("File size: %d bytes", size); int b = 86; for (int a = 85; a < size; a = a + 85) { //NRF_LOG_INFO("%d \n",a); //NRF_LOG_INFO("%d \n",b); f_lseek(&file, b); ff_result = f_read(&file, string, 85, (UINT *)&bytes_written); if (ff_result != FR_OK) { NRF_LOG_INFO("read failed\r\n."); } else { // NRF_LOG_INFO("%d bytes read.", bytes_written); } //for(int i=0;i<bytes_written;i++) //{ // NRF_LOG_INFO("%d -> %c",i,string[i]); //nrf_delay_ms(20); //} b = b + 85; } NRF_LOG_INFO("done"); (void)f_close(&file); //ff_result = f_write(&file, string, sizeof(string), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //(void) f_close(&file); //for(int a=1 ; a<=600 ; a++) //{ //for (int b=1 ;b<=14;b++) //{ //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //ff_result = f_write(&file, ",",1,&bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //nrf_delay_ms(60); //} } /**< Scan parameters requested for scanning and connection. */ static ble_gap_scan_params_t const m_scan_param = { .active = 0x01, #if (NRF_SD_BLE_API_VERSION > 7) .interval_us = NRF_BLE_SCAN_SCAN_INTERVAL * UNIT_0_625_MS, .window_us = NRF_BLE_SCAN_SCAN_WINDOW * UNIT_0_625_MS, #else .interval = NRF_BLE_SCAN_SCAN_INTERVAL, .window = NRF_BLE_SCAN_SCAN_WINDOW, #endif .filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL, .timeout = SCAN_DURATION_WITELIST, .scan_phys = BLE_GAP_PHY_1MBPS, .extended = true, }; /**@brief Names which the central applications will scan for, and which will be advertised by the peripherals. * if these are set to empty strings, the UUIDs defined below will be used */ static char const m_target_periph_name[] = ""; /**< If you want to connect to a peripheral using a given advertising name, type its name here. */ static bool is_connect_per_addr = true; /**< If you want to connect to a peripheral with a given address, set this to true and put the correct address in the variable below. */ static ble_gap_addr_t const m_target_periph_addr = { /* Possible values for addr_type: BLE_GAP_ADDR_TYPE_PUBLIC, BLE_GAP_ADDR_TYPE_RANDOM_STATIC, BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE, BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE. */ .addr_type = BLE_GAP_ADDR_TYPE_RANDOM_STATIC, .addr = {0x8D, 0xFE, 0x23, 0x86, 0x77, 0xD9}}; static void scan_start(void); /**@brief Function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t *p_file_name) { app_error_handler(0xDEADBEEF, line_num, p_file_name); } /**@brief Function for handling the Heart Rate Service Client and Battery Service Client errors. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void service_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling database discovery events. * * @details This function is callback function to handle events from the database discovery module. * Depending on the UUIDs that are discovered, this function should forward the events * to their respective services. * * @param[in] p_event Pointer to the database discovery event. */ static void db_disc_handler(ble_db_discovery_evt_t *p_evt) { ble_hrs_on_db_disc_evt(&m_hrs_c, p_evt); ble_bas_on_db_disc_evt(&m_bas_c, p_evt); } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void adv_scan_start(void) { ret_code_t err_code; //check if there are no flash operations in progress if (!nrf_fstorage_is_busy(NULL)) { // Start scanning for peripherals and initiate connection to devices which // advertise Heart Rate or Running speed and cadence UUIDs. scan_start(); // Turn on the LED to signal scanning. bsp_board_led_on(BSP_BOARD_LED_0); // Start advertising. err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } } static void pm_evt_handler(pm_evt_t const *p_evt) { pm_handler_on_pm_evt(p_evt); pm_handler_disconnect_on_sec_failure(p_evt); pm_handler_flash_clean(p_evt); switch (p_evt->evt_id) { case PM_EVT_PEERS_DELETE_SUCCEEDED: // Bonds are deleted. Start scanning. adv_scan_start(); break; default: break; } } /** * @brief Function for shutdown events. * * @param[in] event Shutdown type. */ static bool shutdown_handler(nrf_pwr_mgmt_evt_t event) { ret_code_t err_code; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); switch (event) { case NRF_PWR_MGMT_EVT_PREPARE_WAKEUP: // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); break; default: break; } return true; } NRF_PWR_MGMT_HANDLER_REGISTER(shutdown_handler, APP_SHUTDOWN_HANDLER_PRIORITY); /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void multi_qwr_conn_handle_assign(uint16_t conn_handle) { for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) { if (m_qwr[i].conn_handle == BLE_CONN_HANDLE_INVALID) { ret_code_t err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr[i], conn_handle); APP_ERROR_CHECK(err_code); break; } } } volatile uint8_t peristat=0; static void on_ble_peripheral_evt(ble_evt_t const *p_ble_evt) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("peripheral Connected"); nrf_delay_ms(20); peristat=1; err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; multi_qwr_conn_handle_assign(p_ble_evt->evt.gap_evt.conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); peristat=0; // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } static void on_ble_central_evt(ble_evt_t const *p_ble_evt) { ret_code_t err_code; ble_gap_evt_t const *p_gap_evt = &p_ble_evt->evt.gap_evt; switch (p_ble_evt->header.evt_id) { // Upon connection, check which peripheral is connected (HR or RSC), initiate DB // discovery, update LEDs status, and resume scanning, if necessary. case BLE_GAP_EVT_CONNECTED: { NRF_LOG_INFO("Central connected"); // If no Heart Rate sensor or RSC sensor is currently connected, try to find them on this peripheral. if ((m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID)) { NRF_LOG_INFO("Attempt to find HRS or RSC on conn_handle 0x%x", p_gap_evt->conn_handle); err_code = ble_db_discovery_start(&m_db_disc[0], p_gap_evt->conn_handle); if (err_code == NRF_ERROR_BUSY) { err_code = ble_db_discovery_start(&m_db_disc[1], p_gap_evt->conn_handle); APP_ERROR_CHECK(err_code); } else { APP_ERROR_CHECK(err_code); } } // Assign connection handle to the QWR module. multi_qwr_conn_handle_assign(p_gap_evt->conn_handle); // Update LEDs status, and check whether to look for more peripherals to connect to. bsp_board_led_on(BSP_BOARD_LED_1); if (ble_conn_state_central_conn_count() == NRF_SDH_BLE_CENTRAL_LINK_COUNT) { bsp_board_led_off(BSP_BOARD_LED_0); } else { // Resume scanning. bsp_board_led_on(BSP_BOARD_LED_0); scan_start(); } } break; // BLE_GAP_EVT_CONNECTED // Upon disconnection, reset the connection handle of the peer that disconnected, // update the LEDs status and start scanning again. case BLE_GAP_EVT_DISCONNECTED: { if (p_gap_evt->conn_handle == m_conn_handle_hrs_c) { NRF_LOG_INFO("HRS central disconnected (reason: %d)", p_gap_evt->params.disconnected.reason); m_conn_handle_hrs_c = BLE_CONN_HANDLE_INVALID; err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &m_adv_uuids[HART_RATE_SERVICE_UUID_IDX]); APP_ERROR_CHECK(err_code); } if ((m_conn_handle_rscs_c == BLE_CONN_HANDLE_INVALID) || (m_conn_handle_hrs_c == BLE_CONN_HANDLE_INVALID)) { // Start scanning. scan_start(); // Update LEDs status. bsp_board_led_on(BSP_BOARD_LED_0); } if (ble_conn_state_central_conn_count() == 0) { bsp_board_led_off(BSP_BOARD_LED_1); } } break; // BLE_GAP_EVT_DISCONNECTED case BLE_GAP_EVT_TIMEOUT: { // No timeout for scanning is specified, so only connection attemps can timeout. if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN) { NRF_LOG_INFO("Connection Request timed out."); } } break; case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST: { // Accept parameters requested by peer. err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle, &p_gap_evt->params.conn_param_update_request.conn_params); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for handling BLE events from peripheral applications. * @details Updates the status LEDs used to report the activity of the peripheral applications. * * @param[in] p_ble_evt Bluetooth stack event. */ static bool ble_evt_is_advertising_timeout(ble_evt_t const *p_ble_evt) { return (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_SET_TERMINATED); } static void ble_evt_handler(ble_evt_t const *p_ble_evt, void *p_context) { uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle; uint16_t role = ble_conn_state_role(conn_handle); // Based on the role this device plays in the connection, dispatch to the right handler. if (role == BLE_GAP_ROLE_PERIPH || ble_evt_is_advertising_timeout(p_ble_evt)) { //ble_hrs_on_ble_evt(p_ble_evt, &m_hrs); ble_nus_on_ble_evt(p_ble_evt, &m_nus); on_ble_peripheral_evt(p_ble_evt); } else if ((role == BLE_GAP_ROLE_CENTRAL) || (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_REPORT)) { ble_hrs_c_on_ble_evt(p_ble_evt, &m_hrs_c); //ble_nus_on_ble_evt(p_ble_evt,&m_nus); on_ble_central_evt(p_ble_evt); } } /**@brief SoftDevice SoC event handler. * * @param[in] evt_id SoC event. * @param[in] p_context Context. */ static void soc_evt_handler(uint32_t evt_id, void *p_context) { switch (evt_id) { case NRF_EVT_FLASH_OPERATION_SUCCESS: /* fall through */ case NRF_EVT_FLASH_OPERATION_ERROR: if (m_memory_access_in_progress) { m_memory_access_in_progress = false; scan_start(); } break; default: // No implementation needed. break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); NRF_LOG_INFO("%d", err_code); APP_ERROR_CHECK(err_code); // Register handlers for BLE and SoC events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); NRF_SDH_SOC_OBSERVER(m_soc_observer, APP_SOC_OBSERVER_PRIO, soc_evt_handler, NULL); } /**@brief Function for the Peer Manager initialization. */ static void peer_manager_init(void) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /** @brief Clear bonding information from persistent storage */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for disabling the use of whitelist for scanning. */ static void whitelist_disable(void) { if (!m_whitelist_disabled) { NRF_LOG_INFO("Whitelist temporarily disabled."); m_whitelist_disabled = true; nrf_ble_scan_stop(); scan_start(); } } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { ret_code_t err_code; switch (event) { case BSP_EVENT_SLEEP: nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: whitelist_disable(); break; default: break; } } /**@brief Heart Rate Collector Handler. */ static void hrs_c_evt_handler(ble_hrs_c_t *p_hrs_c, ble_hrs_c_evt_t *p_hrs_c_evt) { NRF_LOG_INFO("hrs_c_evt_handler"); ret_code_t err_code; switch (p_hrs_c_evt->evt_type) { case BLE_HRS_C_EVT_DISCOVERY_COMPLETE: { NRF_LOG_DEBUG("Heart rate service discovered."); err_code = ble_hrs_c_handles_assign(p_hrs_c, p_hrs_c_evt->conn_handle, &p_hrs_c_evt->params.peer_db); APP_ERROR_CHECK(err_code); // Initiate bonding. err_code = pm_conn_secure(p_hrs_c_evt->conn_handle, false); if (err_code != NRF_ERROR_BUSY) { APP_ERROR_CHECK(err_code); } // Heart rate service discovered. Enable notification of Heart Rate Measurement. err_code = ble_hrs_c_hrm_notif_enable(p_hrs_c); APP_ERROR_CHECK(err_code); } break; case BLE_HRS_C_EVT_HRM_NOTIFICATION: { NRF_LOG_INFO("Heart Rate = %d.", p_hrs_c_evt->params.hrm.hr_value); heart_rate = p_hrs_c_evt->params.hrm.hr_value; if (p_hrs_c_evt->params.hrm.rr_intervals_cnt != 0) { uint32_t rr_avg = 0; for (uint32_t i = 0; i < p_hrs_c_evt->params.hrm.rr_intervals_cnt; i++) { rr_avg += p_hrs_c_evt->params.hrm.rr_intervals[i]; } rr_avg = rr_avg / p_hrs_c_evt->params.hrm.rr_intervals_cnt; NRF_LOG_DEBUG("rr_interval (avg) = %d.", rr_avg); } } break; default: break; } } /**@brief Battery level Collector Handler. */ static void bas_c_evt_handler(ble_bas_c_t *p_bas_c, ble_bas_c_evt_t *p_bas_c_evt) { NRF_LOG_INFO("bas_c_evt_handler"); ret_code_t err_code; switch (p_bas_c_evt->evt_type) { case BLE_BAS_C_EVT_DISCOVERY_COMPLETE: { err_code = ble_bas_c_handles_assign(p_bas_c, p_bas_c_evt->conn_handle, &p_bas_c_evt->params.bas_db); APP_ERROR_CHECK(err_code); // Battery service discovered. Enable notification of Battery Level. NRF_LOG_DEBUG("Battery Service discovered. Reading battery level."); err_code = ble_bas_c_bl_read(p_bas_c); APP_ERROR_CHECK(err_code); NRF_LOG_DEBUG("Enabling Battery Level Notification."); err_code = ble_bas_c_bl_notif_enable(p_bas_c); APP_ERROR_CHECK(err_code); } break; case BLE_BAS_C_EVT_BATT_NOTIFICATION: NRF_LOG_INFO("Battery Level received %d %%.", p_bas_c_evt->params.battery_level); break; case BLE_BAS_C_EVT_BATT_READ_RESP: NRF_LOG_INFO("Battery Level Read as %d %%.", p_bas_c_evt->params.battery_level); break; default: break; } } /** * @brief Heart rate collector initialization. */ static void hrs_c_init(void) { NRF_LOG_INFO("HRS_C_INIT"); ble_hrs_c_init_t hrs_c_init_obj; hrs_c_init_obj.evt_handler = hrs_c_evt_handler; hrs_c_init_obj.error_handler = service_error_handler; hrs_c_init_obj.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_hrs_c_init(&m_hrs_c, &hrs_c_init_obj); APP_ERROR_CHECK(err_code); } /** * @brief Battery level collector initialization. */ static void bas_c_init(void) { NRF_LOG_INFO("BAS_C_INIT"); ble_bas_c_init_t bas_c_init_obj; bas_c_init_obj.evt_handler = bas_c_evt_handler; bas_c_init_obj.error_handler = service_error_handler; bas_c_init_obj.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_bas_c_init(&m_bas_c, &bas_c_init_obj); APP_ERROR_CHECK(err_code); } /** * @brief Database discovery collector initialization. */ static void db_discovery_init(void) { ble_db_discovery_init_t db_init; memset(&db_init, 0, sizeof(db_init)); db_init.evt_handler = db_disc_handler; db_init.p_gatt_queue = &m_ble_gatt_queue; ret_code_t err_code = ble_db_discovery_init(&db_init); APP_ERROR_CHECK(err_code); } /**@brief Retrieve a list of peer manager peer IDs. * * @param[inout] p_peers The buffer where to store the list of peer IDs. * @param[inout] p_size In: The size of the @p p_peers buffer. * Out: The number of peers copied in the buffer. */ static void peer_list_get(pm_peer_id_t *p_peers, uint32_t *p_size) { pm_peer_id_t peer_id; uint32_t peers_to_copy; peers_to_copy = (*p_size < BLE_GAP_WHITELIST_ADDR_MAX_COUNT) ? *p_size : BLE_GAP_WHITELIST_ADDR_MAX_COUNT; peer_id = pm_next_peer_id_get(PM_PEER_ID_INVALID); *p_size = 0; while ((peer_id != PM_PEER_ID_INVALID) && (peers_to_copy--)) { p_peers[(*p_size)++] = peer_id; peer_id = pm_next_peer_id_get(peer_id); } } /**@brief Function to start scanning. */ static void scan_start(void) { ret_code_t err_code; if (nrf_fstorage_is_busy(NULL)) { m_memory_access_in_progress = true; return; } NRF_LOG_INFO("Starting scan."); err_code = nrf_ble_scan_start(&m_scan); APP_ERROR_CHECK(err_code); err_code = bsp_indication_set(BSP_INDICATE_SCANNING); NRF_LOG_INFO("%d", err_code); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool *p_erase_bonds) { ret_code_t err_code; bsp_event_t startup_event; err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing the power management module. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief GATT module event handler. */ static void gatt_evt_handler(nrf_ble_gatt_t *p_gatt, nrf_ble_gatt_evt_t const *p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); switch (p_evt->evt_id) { case NRF_BLE_GATT_EVT_ATT_MTU_UPDATED: { NRF_LOG_INFO("GATT ATT MTU on connection 0x%x changed to %d.", p_evt->conn_handle, p_evt->params.att_mtu_effective); } break; case NRF_BLE_GATT_EVT_DATA_LENGTH_UPDATED: { NRF_LOG_INFO("Data length for connection 0x%x updated to %d.", p_evt->conn_handle, p_evt->params.data_length); } break; default: break; } } static void whitelist_load() { ret_code_t ret; pm_peer_id_t peers[8]; uint32_t peer_cnt; memset(peers, PM_PEER_ID_INVALID, sizeof(peers)); peer_cnt = (sizeof(peers) / sizeof(pm_peer_id_t)); // Load all peers from flash and whitelist them. peer_list_get(peers, &peer_cnt); ret = pm_whitelist_set(peers, peer_cnt); APP_ERROR_CHECK(ret); // Setup the device identies list. // Some SoftDevices do not support this feature. ret = pm_device_identities_list_set(peers, peer_cnt); if (ret != NRF_ERROR_NOT_SUPPORTED) { APP_ERROR_CHECK(ret); } } static void on_whitelist_req(void) { ret_code_t err_code; // Whitelist buffers. ble_gap_addr_t whitelist_addrs[8]; ble_gap_irk_t whitelist_irks[8]; memset(whitelist_addrs, 0x00, sizeof(whitelist_addrs)); memset(whitelist_irks, 0x00, sizeof(whitelist_irks)); uint32_t addr_cnt = (sizeof(whitelist_addrs) / sizeof(ble_gap_addr_t)); uint32_t irk_cnt = (sizeof(whitelist_irks) / sizeof(ble_gap_irk_t)); // Reload the whitelist and whitelist all peers. whitelist_load(); // Get the whitelist previously set using pm_whitelist_set(). err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt, whitelist_irks, &irk_cnt); if (((addr_cnt == 0) && (irk_cnt == 0)) || (m_whitelist_disabled)) { // Don't use whitelist. err_code = nrf_ble_scan_params_set(&m_scan, NULL); APP_ERROR_CHECK(err_code); } } static void scan_evt_handler(scan_evt_t const *p_scan_evt) { ret_code_t err_code; switch(p_scan_evt->scan_evt_id) { case NRF_BLE_SCAN_EVT_WHITELIST_REQUEST: { on_whitelist_req(); m_whitelist_disabled = false; } break; case NRF_BLE_SCAN_EVT_CONNECTING_ERROR: { err_code = p_scan_evt->params.connecting_err.err_code; APP_ERROR_CHECK(err_code); } break; case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT: { NRF_LOG_INFO("Scan timed out."); scan_start(); } break; case NRF_BLE_SCAN_EVT_FILTER_MATCH: break; case NRF_BLE_SCAN_EVT_WHITELIST_ADV_REPORT: break; default: break; } } /**@brief Function for initializing the timer. */ static void timer_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the GATT module. */ static void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for initialization scanning and setting filters. */ static void scan_init(void) { ret_code_t err_code; nrf_ble_scan_init_t init_scan; memset(&init_scan, 0, sizeof(init_scan)); init_scan.p_scan_param = &m_scan_param; init_scan.connect_if_match = true; init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG; err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler); APP_ERROR_CHECK(err_code); ble_uuid_t uuid = { .uuid = TARGET_UUID, .type = BLE_UUID_TYPE_BLE, }; err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &uuid); APP_ERROR_CHECK(err_code); if (strlen(m_target_periph_name) != 0) { err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_NAME_FILTER, m_target_periph_name); APP_ERROR_CHECK(err_code); } if (is_connect_per_addr) { err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_ADDR_FILTER, m_target_periph_addr.addr); APP_ERROR_CHECK(err_code); } err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_ALL_FILTER, false); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details Handle any pending log operation(s), then sleep until the next event occurs. */ static void idle_state_handle(void) { ret_code_t err_code; err_code = nrf_ble_lesc_request_handler(); APP_ERROR_CHECK(err_code); NRF_LOG_FLUSH(); nrf_pwr_mgmt_run(); } /**@brief Function for starting a scan, or instead trigger it from peer manager (after * deleting bonds). * * @param[in] p_erase_bonds Pointer to a bool to determine if bonds will be deleted before scanning. */ void scanning_start(bool *p_erase_bonds) { // Start scanning for peripherals and initiate connection // with devices that advertise GATT Service UUID. if (*p_erase_bonds == true) { // Scan is started by the PM_EVT_PEERS_DELETE_SUCCEEDED event. delete_bonds(); } else { scan_start(); } } static void gpio_init(void) { ret_code_t err_code; NRF_LOG_INFO("INIT gpio"); nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(false); err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config); APP_ERROR_CHECK(err_code); nrf_drv_gpiote_in_event_enable(PIN_IN, true); } static void gap_params_init(void) { ret_code_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = m_scan.conn_params.min_conn_interval; gap_conn_params.max_conn_interval = m_scan.conn_params.max_conn_interval; gap_conn_params.slave_latency = m_scan.conn_params.slave_latency; gap_conn_params.conn_sup_timeout = m_scan.conn_params.conn_sup_timeout; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } static void on_conn_params_evt(ble_conn_params_evt_t *p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } void uart_event_handle(app_uart_evt_t *p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: NRF_LOG_INFO("uart event handle"); UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (data_array[index - 1] == '\r') || (index >= m_ble_nus_max_data_len)) { if (index > 1) { NRF_LOG_INFO("uart send handle"); NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); NRF_LOG_INFO("%d", err_code); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined(UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } static void nus_data_handler(ble_nus_evt_t *p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; nrf_delay_ms(10); NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_INFO("rom BLE NUS. "); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { NRF_LOG_INFO("1 "); do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY) ; } } } static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; for (uint32_t i = 0; i < NRF_SDH_BLE_TOTAL_LINK_COUNT; i++) { err_code = nrf_ble_qwr_init(&m_qwr[i], &qwr_init); APP_ERROR_CHECK(err_code); } // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } static void advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } uint8_t gyrox=0; uint8_t gyroy=0; uint8_t gyroz=0; uint8_t accelx=1,accely=1,accelz=1; uint8_t magx=2,magy=2,magz=2; uint8_t counter=0; static uint8_t data_array2[150]; int main(void) { bool erase_bonds; uint32_t time_ms = 100; //Time(in miliseconds) between consecutive compare events. uint32_t time_ticks; uint8_t gyrox=0; uint8_t gyroy=1; uint8_t gyroz=2; uint8_t accelx=3,accely=4,accelz=5; uint8_t magx=2,magy=2,magz=2; uint8_t counter=0; uint8_t lat=6,lon=7,alt=8; static uint8_t data_array2[135]; uint32_t err_code = NRF_SUCCESS; uart_init(); log_init(); timer_init(); power_management_init(); buttons_leds_init(&erase_bonds); ble_stack_init(); gatt_init(); peer_manager_init(); db_discovery_init(); hrs_c_init(); bas_c_init(); scan_init(); gap_params_init(); services_init(); advertising_init(); conn_params_init(); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler); APP_ERROR_CHECK(err_code); time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms); nrf_drv_timer_extended_compare(&TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); nrf_drv_timer_enable(&TIMER_LED); gpio_init(); // advertising_start(); //// Start execution. NRF_LOG_INFO("Heart Rate collector example started."); // fatfs_example(); //NRF_LOG_INFO("1"); //Enter main loop. int first_row = 1; if (erase_bonds == true) { // Scanning and advertising is done upon PM_EVT_PEERS_DELETE_SUCCEEDED event. delete_bonds(); } else { adv_scan_start(); } nrf_delay_ms(5000); // Enter main loop. for (;;) { idle_state_handle(); if(peristat==1) { //for live data if(timer_call==1) { if(counter<200) { if(BLE_GATTS_EVT_SYS_ATTR_MISSING) { err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0,0); APP_ERROR_CHECK(err_code); } NRF_LOG_INFO("%d",counter); sprintf(data_array2,"{\"g_x\":%d,\"g_y\":%d,\"g_z\":%d,\"a_x\":%d,\"a_y\":%d,\"a_z\":%d,\"m_x\":%d,\"m_y\":%d,\"m_z\":%d,\"lat\":%d,\"lon\":%d,\"alt\":%d,\"hb\":%d}",gyrox,gyroy,gyroz,accelx,accely,accelz,magx,magy,magz,lat,lon,alt,heart_rate); NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array2, 1); do { uint16_t length = (uint16_t)135; err_code = ble_nus_data_send(&m_nus, data_array2, &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_NOT_FOUND)) { NRF_LOG_INFO("%d",err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); //index = 0; nrf_delay_ms(50); NRF_LOG_INFO("done"); gyrox++; gyroy++; gyroz++; accelx++; accely++; accelz++; magx++; magy++; magz++; counter++; lon++; lat++; alt++; } } } } //while(1) //{ //if(button_pressed) //{ //if(timer_call==1) //{ ////write code //ff_result = f_open(&file, FILE_NAME, FA_READ | FA_WRITE | FA_OPEN_APPEND); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Unable to open or create file: " FILE_NAME "."); //} //if(first_row==1) //{ //ff_result = f_write(&file, init , sizeof(init), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("read failed\r\n."); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //first_row=0; //} // for (int b=1 ;b<=14;b++) //{ //if(b==13) //{ //itoa(heart_rate,s_heartrate,10); //ff_result = f_write(&file, s_heartrate, sizeof(s_heartrate), (UINT *) &bytes_written); //} //else //{ //ff_result = f_write(&file, data, sizeof(data), (UINT *) &bytes_written); //if (ff_result != FR_OK) //{ // NRF_LOG_INFO("Write failed\r\n."); //} //else //{ // // NRF_LOG_INFO("%d bytes written.", bytes_written); //} //} //ff_result = f_write(&file, ",",1,&bytes_written); //} //ff_result = f_write(&file, "\n",1,&bytes_written); //timer_call=0; //(void) f_close(&file); ////nrf_delay_ms(100); //} // //idle_state_handle(); // //bsp_board_led_invert(3); //} //}// if(button_pressed) // uint32_t time_ms = 100; //Time(in miliseconds) between consecutive compare events. //uint32_t time_ticks ; // uint32_t err_code = NRF_SUCCESS; //bsp_board_init(BSP_INIT_LEDS); // uint32_t time_ms2 ; // nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; // NRF_LOG_INFO("FATFS example started."); // fatfs_example(); // err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, timer_led_event_handler); // APP_ERROR_CHECK(err_code); }

Children
No Data
Related