hi ,
i am using nrf52832 dev kit , using which i am capturing accelerometer data from LIS3DSH for an RTC interrupt of 2 minutes, i.e., for every 2 minutes it should capture accelerometer data,
first interrupt it is working fine with capturing data , but for second time it is going for a breakpoint condition, not able to understand , can anyone please help
code is:
/** * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "our_service.h" #include <stdbool.h> #include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "app_error.h" #include "ble.h" #include "ble_hci.h" #include "ble_srv_common.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "app_timer.h" #include "fds.h" #include "peer_manager.h" #include "bsp_btn_ble.h" #include "sensorsim.h" #include "ble_conn_state.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "nrf_pwr_mgmt.h" #include "nrf_uart.h" //#include <float.h> #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "app_uart.h" #include "our_service.h" #include "nrf_drv_rtc.h" #include "nrf_drv_clock.h" //for accelerometer #include "nrf_drv_twi.h" #include "LIS3DSH.h" #include "nrf_delay.h" #include "FFT.h" #include "app_util_bds.h" #define DEVICE_NAME "GVR LIS3DSH_2" /**< Name of device. Will be included in the advertising data. */ #define MANUFACTURER_NAME "NordicSemiconductor" /**< Manufacturer. Will be passed to Device Information Service. */ #define APP_ADV_INTERVAL 100 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 187.5 ms). */ #define APP_ADV_DURATION 0 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(8, UNIT_1_25_MS) /**< Minimum acceptable connection interval (0.1 seconds). */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(15, UNIT_1_25_MS) /**< Maximum acceptable connection interval (0.2 second). */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds). */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 0 /**< LE Secure Connections not enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ //#define SAMPLE_NUMBER 1*1600 #define PACKET_SIZE 12 bool RTC_FLAG = false; #define SOFT_RESET 0 bool collect = false; NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ //#define I2C_MEMS_SENSOR_BUS_ADDRESS 0x1e static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ extern bool wr_flag ; extern bool Notify_flag ; int16_t index = 0; uint16_t wakeup = 0; // FROM_SERVICE_TUTORIAL: Declare a service structure for our application ble_os_t m_our_service; #define APP_ERROR_CHECK1(ERR_CODE) \ if (ERR_CODE != NRF_SUCCESS) \ { \ return ERR_CODE; \ } // OUR_JOB: Step 3.G, Declare an app_timer id variable and define our timer interval and define a timer interval #define COMPARE_COUNTERTIME (10UL) /**< Get Compare event COMPARE_TIME seconds after the counter starts from 0. */ #ifdef BSP_LED_0 #define TICK_EVENT_OUTPUT BSP_LED_2 /**< Pin number for indicating tick event. */ #endif #ifndef TICK_EVENT_OUTPUT #error "Please indicate output pin" #endif #ifdef BSP_LED_1 #define COMPARE_EVENT_OUTPUT BSP_LED_1 /**< Pin number for indicating compare event. */ #endif #ifndef COMPARE_EVENT_OUTPUT #error "Please indicate output pin" #endif const nrf_drv_rtc_t rtc = NRF_DRV_RTC_INSTANCE(2); /**< Declaring an instance of nrf_drv_rtc for RTC0. */ /** @brief: Function for handling the RTC0 interrupts. * Triggered on TICK and COMPARE0 match. */ static void rtc_handler(nrf_drv_rtc_int_type_t int_type) { if (int_type == NRF_DRV_RTC_INT_COMPARE0) { int temp=nrf_drv_rtc_counter_get (&rtc) ; printf("current value is=%d\r\n",temp/8); nrf_gpio_pin_toggle(COMPARE_EVENT_OUTPUT); nrf_drv_rtc_counter_clear(&rtc); nrf_drv_rtc_int_enable(&rtc, NRF_RTC_INT_COMPARE0_MASK); RTC_FLAG = true; } else if (int_type == NRF_DRV_RTC_INT_TICK) { nrf_gpio_pin_toggle(TICK_EVENT_OUTPUT); // printf("%d\n", NRF_RTC0->COUNTER); } } // Use UUIDs for service(s) used in your application. static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifiers. */ { {BLE_UUID_OUR_SERVICE_UUID, BLE_UUID_TYPE_VENDOR_BEGIN} }; static void advertising_start(bool erase_bonds); /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } // ALREADY_DONE_FOR_YOU: This is a timer event handler //static void timer_timeout_handler(void * p_context) //{ // // OUR_JOB: Step 3.F, Update temperature and characteristic value. //} #define MAX_TEST_DATA_BYTES (15U) /**< max number of test bytes to be used for tx and rx. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void pm_evt_handler(pm_evt_t const * p_evt) { ret_code_t err_code; switch (p_evt->evt_id) { case PM_EVT_BONDED_PEER_CONNECTED: { NRF_LOG_INFO("Connected to a previously bonded device."); } break; case PM_EVT_CONN_SEC_SUCCEEDED: { NRF_LOG_INFO("Connection secured: role: %d, conn_handle: 0x%x, procedure: %d.", ble_conn_state_role(p_evt->conn_handle), p_evt->conn_handle, p_evt->params.conn_sec_succeeded.procedure); } break; case PM_EVT_CONN_SEC_FAILED: { /* Often, when securing fails, it shouldn't be restarted, for security reasons. * Other times, it can be restarted directly. * Sometimes it can be restarted, but only after changing some Security Parameters. * Sometimes, it cannot be restarted until the link is disconnected and reconnected. * Sometimes it is impossible, to secure the link, or the peer device does not support it. * How to handle this error is highly application dependent. */ } break; case PM_EVT_CONN_SEC_CONFIG_REQ: { // Reject pairing request from an already bonded peer. pm_conn_sec_config_t conn_sec_config = {.allow_repairing = false}; pm_conn_sec_config_reply(p_evt->conn_handle, &conn_sec_config); } break; case PM_EVT_STORAGE_FULL: { // Run garbage collection on the flash. err_code = fds_gc(); if (err_code == FDS_ERR_NO_SPACE_IN_QUEUES) { // Retry. } else { APP_ERROR_CHECK(err_code); } } break; case PM_EVT_PEERS_DELETE_SUCCEEDED: { advertising_start(false); } break; case PM_EVT_PEER_DATA_UPDATE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peer_data_update_failed.error); } break; case PM_EVT_PEER_DELETE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peer_delete_failed.error); } break; case PM_EVT_PEERS_DELETE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peers_delete_failed_evt.error); } break; case PM_EVT_ERROR_UNEXPECTED: { // Assert. APP_ERROR_CHECK(p_evt->params.error_unexpected.error); } break; case PM_EVT_CONN_SEC_START: case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED: case PM_EVT_PEER_DELETE_SUCCEEDED: case PM_EVT_LOCAL_DB_CACHE_APPLIED: case PM_EVT_LOCAL_DB_CACHE_APPLY_FAILED: // This can happen when the local DB has changed. case PM_EVT_SERVICE_CHANGED_IND_SENT: case PM_EVT_SERVICE_CHANGED_IND_CONFIRMED: default: break; } } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. This creates and starts application timers. */ static void timers_init(void) { // Initialize timer module. ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); // OUR_JOB: Step 3.H, Initiate our timer } /**@brief Function for the GAP initialization. * * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the * device including the device name, appearance, and the preferred connection parameters. */ static void gap_params_init(void) { ret_code_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the GATT module. */ static void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); //FROM_SERVICE_TUTORIAL: Add code to initialize the services used by the application. our_service_init(&m_our_service); } /**@brief Function for handling the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module which * are passed to the application. * @note All this function does is to disconnect. This could have been done by simply * setting the disconnect_on_fail config parameter, but instead we use the event * handler mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { ret_code_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling a Connection Parameters error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { ret_code_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for starting timers. */ static void application_timers_start(void) { // OUR_JOB: Step 3.I, Start our timer } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { ret_code_t err_code; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { ret_code_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_DIRECTED_HIGH_DUTY: NRF_LOG_INFO("Directed advertising."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_DIRECTED); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_FAST: NRF_LOG_INFO("Fast advertising."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_SLOW: NRF_LOG_INFO("Slow advertising."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_SLOW); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_FAST_WHITELIST: NRF_LOG_INFO("Fast advertising with whitelist."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_SLOW_WHITELIST: NRF_LOG_INFO("Slow advertising with whitelist."); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST); APP_ERROR_CHECK(err_code); err_code = ble_advertising_restart_without_whitelist(&m_advertising); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); sleep_mode_enter(); break; case BLE_ADV_EVT_WHITELIST_REQUEST: { ble_gap_addr_t whitelist_addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT]; ble_gap_irk_t whitelist_irks[BLE_GAP_WHITELIST_ADDR_MAX_COUNT]; uint32_t addr_cnt = BLE_GAP_WHITELIST_ADDR_MAX_COUNT; uint32_t irk_cnt = BLE_GAP_WHITELIST_ADDR_MAX_COUNT; err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt, whitelist_irks, &irk_cnt); APP_ERROR_CHECK(err_code); NRF_LOG_DEBUG("pm_whitelist_get returns %d addr in whitelist and %d irk whitelist", addr_cnt, irk_cnt); // Apply the whitelist. err_code = ble_advertising_whitelist_reply(&m_advertising, whitelist_addrs, addr_cnt, whitelist_irks, irk_cnt); APP_ERROR_CHECK(err_code); } break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t err_code = NRF_SUCCESS; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected."); index = 0; // LED indication will be changed when advertising starts. break; case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected."); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); NRF_SDH_BLE_OBSERVER(m_our_service_observer, APP_BLE_OBSERVER_PRIO, ble_our_service_on_ble_evt, (void*) &m_our_service); //OUR_JOB: Step 3.C Call ble_our_service_on_ble_evt() to do housekeeping of ble connections related to our service and characteristics } /**@brief Function for the Peer Manager initialization. */ static void peer_manager_init(void) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /**@brief Clear bond information from persistent storage. */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated when button is pressed. */ static void bsp_event_handler(bsp_event_t event) { ret_code_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; // BSP_EVENT_SLEEP case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; // BSP_EVENT_DISCONNECT case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; // BSP_EVENT_KEY_0 case BSP_EVENT_KEY_2: err_code = bsp_indication_set( 3); nrf_delay_us(ACC_DELAY_2_0); collect =true; APP_ERROR_CHECK(err_code); printf("key3 pressed\n"); err_code = bsp_indication_set( BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); break; default: break; } } /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { ret_code_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = true; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; init.config.ble_adv_whitelist_enabled = true; init.config.ble_adv_directed_high_duty_enabled = true; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { ret_code_t err_code; bsp_event_t startup_event; err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for starting advertising. */ static void advertising_start(bool erase_bonds) { if (erase_bonds == true) { delete_bonds(); // Advertising is started by PM_EVT_PEERS_DELETED_SUCEEDED event } else { ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } } #define APP_ERROR_CHECK1(ERR_CODE) \ if (ERR_CODE != NRF_SUCCESS) \ { \ return ERR_CODE; \ } /* TWI instance ID. */ #if TWI0_ENABLED #define TWI_INSTANCE_ID 0 #elif TWI1_ENABLED #define TWI_INSTANCE_ID 1 #endif /* Number of possible TWI addresses. */ #define TWI_ADDRESSES 127 //#define MEMS_SENSOR_WHO_AM_I_ADDR 0x0F /* TWI instance. */ static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(0); ret_code_t err_code = NRF_SUCCESS; uint16_t sampleCntTracker = 0x00; //typedef struct //{ // float fReal; // float fImag; //}stXComplex; #include <math.h> int16_t x_axis_data[SAMPLE_NUMBER] = {0x00}; int16_t y_axis_data[SAMPLE_NUMBER] = {0x00}; int16_t z_axis_data[SAMPLE_NUMBER] = {0x00}; /** * @brief TWI initialization. */ void twi_init (void) { ret_code_t err_code; const nrf_drv_twi_config_t twi_config = { .scl = ARDUINO_SCL_PIN, .sda = ARDUINO_SDA_PIN, .frequency = NRF_DRV_TWI_FREQ_400K, .interrupt_priority = APP_IRQ_PRIORITY_LOW, .clear_bus_init = true }; err_code = nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL); APP_ERROR_CHECK(err_code); nrf_drv_twi_enable(&m_twi); } int ct = 0; ret_code_t readFromlis3dsh(uint8_t reg, uint8_t* p_dest, uint8_t bytes) { ret_code_t err = NRF_SUCCESS; err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, ®, sizeof(reg), false); if(ct <= 10) {printf("error = twi tx %d\n",err);} APP_ERROR_CHECK1(err); nrf_delay_us(4); err = nrf_drv_twi_rx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, p_dest, bytes); APP_ERROR_CHECK1(err); ct++; if(ct <= 10) {printf("error = twi rx %d---->%d\n",err,ct);} return NRF_SUCCESS; } ret_code_t writeTolis3dsh(uint8_t* const data, uint8_t bytes) { ret_code_t err = NRF_SUCCESS; err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, data, sizeof(data), false); APP_ERROR_CHECK1(err); return NRF_SUCCESS; } bool verifyLis3dshAccelerometer() { uint8_t verify = 0x00; readFromlis3dsh(MEMS_SENSOR_WHO_AM_I_ADDR, &verify, sizeof(verify)); if(verify == MEMS_SENSOR_WHO_AM_I_VALUE) { return true; } return false; } ret_code_t noOfSamplesStoredinfifo(uint8_t* samplesCnt) { ret_code_t err = NRF_SUCCESS; err = readFromlis3dsh(MEMS_SENSOR_FIFO_SRC_ADDR, samplesCnt, sizeof(uint8_t)); APP_ERROR_CHECK(err); } ret_code_t wakeUpStateMachineConfiguration() { ret_code_t err = NRF_SUCCESS; uint8_t toSend[2] = {0x00}; toSend[0] = MEMS_SENSOR_CTRL_REG1_ADDR; toSend[1] = 0x01; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = MEMS_SENSOR_CTRL_REG3_ADDR; toSend[1] = 0x48; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = MEMS_SENSOR_CTRL_REG4_ADDR; toSend[1] = 0x97;/* 1.6k sampling rate is selected*/ err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = MEMS_SENSOR_CTRL_REG5_ADDR; toSend[1] = 0x00; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = THRS1_1; toSend[1] = 0x65; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = ST1_1; toSend[1] = 0x05; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = ST1_2; toSend[1] = 0x11; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = MASK1_B; toSend[1] = 0xFC; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = MASK1_A; toSend[1] = 0xFC; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); toSend[0] = SETT1; toSend[1] = 0x01; err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); /* FIFO mode selection */ memset(toSend, 0x00, sizeof(toSend)); toSend[0] = MEMS_SENSOR_CTRL_REG6_ADDR; toSend[1] |= (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT); err = writeTolis3dsh(toSend, sizeof(toSend)); APP_ERROR_CHECK1(err); return NRF_SUCCESS; } int16_t two_compl_to_int16(uint16_t two_compl_value) { int16_t int16_value = 0; /* conversion */ if (two_compl_value > 32768) { int16_value = (int16_t)(-(((~two_compl_value) & (uint16_t)(0xFFFF)) + (uint16_t)(1))); } else { int16_value = (int16_t)(two_compl_value); } return int16_value; } ret_code_t ReadOutputRegistersOfAccelerometerNew() { ret_code_t err = NRF_SUCCESS; uint8_t vibData[120] = {0x00}; err = readFromlis3dsh(MEMS_SENSOR_OUT_X_L_ADDR, &vibData[0], sizeof(vibData)); // printf("error read Lis3 = %d\n",err); APP_ERROR_CHECK(err); for(uint16_t i = 0, j = 0; (j < SAMPLE_READ_ONE_ITERATION) && (i < (uint16_t)(SAMPLE_READ_ONE_ITERATION*6)) ; i = (uint16_t)(i+6), j++) { x_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+1]<<8) | (uint16_t)vibData[i]); y_axis_data[sampleCntTracker + j]= two_compl_to_int16(((uint16_t)vibData[i+3]<<8) | (uint16_t)vibData[i+2]); z_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+5]<<8) | (uint16_t)vibData[i+4]); x_axis_data[sampleCntTracker + j] = (int16_t)(x_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY); y_axis_data[sampleCntTracker + j] = (int16_t)(y_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY); z_axis_data[sampleCntTracker + j] = (int16_t)(z_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY); } sampleCntTracker = (uint16_t)(sampleCntTracker + SAMPLE_READ_ONE_ITERATION); return NRF_SUCCESS; } //uint32_t timeCapture = 0x00; //uint32_t time_ticks = 0x00; //const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0); //void startTimer() //{ // uint32_t time_ms = 8000; //Time(in miliseconds) between consecutive compare events. // nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; // err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, NULL); // APP_ERROR_CHECK(err_code); // time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms); // // nrf_drv_timer_extended_compare( // &TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); // nrf_drv_timer_enable(&TIMER_LED); //} ret_code_t accelerometerDataAcquisition_SR_1_6_0_0(uint16_t sampleCount) { ret_code_t err = NRF_SUCCESS; uint8_t fifoSamples = 0x00; memset(x_axis_data,0,sizeof(x_axis_data)); memset(y_axis_data,0,sizeof(y_axis_data)); memset(z_axis_data,0,sizeof(z_axis_data)); //startTimer(); //nrf_delay_ms(50); //timeCapture = nrfx_timer_capture(&TIMER_LED, 0); //nrf_delay_us(ACC_DELAY_2_0); //nrf_delay_us(10000); //startTimer(); nrf_delay_us(ACC_DELAY_2_0); err = noOfSamplesStoredinfifo(&fifoSamples); printf("error nsamples= %d\n",fifoSamples); APP_ERROR_CHECK1(err); for(uint16_t it_cnt = 0x00; it_cnt < (sampleCount)/20; it_cnt++) { if(it_cnt) { nrf_delay_us(SEC_IT_DELAY_ODR_1_6_0_0); } err = ReadOutputRegistersOfAccelerometerNew(); // printf("error = read %d\n",err); APP_ERROR_CHECK1(err); } return NRF_SUCCESS; } //void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) //{ // APP_ERROR_CHECK(NRF_LOG_INIT(NULL)); // NRF_LOG_DEFAULT_BACKENDS_INIT(); // NRF_LOG_INFO("INTERRUPT OCCURED"); // NRF_LOG_FLUSH(); //} //ret_code_t wakeUpStateMachineInterruptConfiguration(void) //{ // ret_code_t err = NRF_SUCCESS; // nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true); // in_config.pull = NRF_GPIO_PIN_PULLUP; // err = nrf_drv_gpiote_in_init(WAKE_UP_INT_PIN, &in_config, in_pin_handler); // APP_ERROR_CHECK1(err); // nrf_drv_gpiote_in_event_enable(WAKE_UP_INT_PIN, true); // return err; //} //void timer_initializations() //{ // // // //} //const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0); int8_t address = 0x00; ret_code_t configureLis3dshAccelerometer() { ret_code_t err = NRF_SUCCESS; uint8_t reg[2] = {0x00}; reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR; reg[1] = DATARATE_1600 | XYZ_ENABLE; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); #if 0 reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR; reg[1] |= XYZ_ENABLE; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); #if SOFT_RESET reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR; reg[1] = SOFT_RESET; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); #endif reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR; reg[1] = 0x00; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR; reg[1] |= FILTER_BW_800; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR; reg[1] |= FULLSCALE_2; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR; reg[1] |= (SERIALINTERFACE_4WIRE); err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); #endif reg[0] = MEMS_SENSOR_CTRL_REG6_ADDR; reg[1] = (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT); err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); reg[0] = MEMS_SENSOR_FIFO_CTRL_ADDR; //reg[1] |= FIFO_STREAM_MODE; reg[1] = 0x54; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); // uint8_t no = 0x00; // err = noOfSamplesStoredinfifo(&no); // APP_ERROR_CHECK(err); } void uart_error_handle(app_uart_evt_t * p_event) { if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR) { APP_ERROR_HANDLER(p_event->data.error_communication); } else if (p_event->evt_type == APP_UART_FIFO_ERROR) { APP_ERROR_HANDLER(p_event->data.error_code); } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined (UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_error_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ #define UART_HWFC APP_UART_FLOW_CONTROL_ENABLED uint8_t data1 = 0x0F; static void lfclk_config(void) { ret_code_t err_code = nrf_drv_clock_init(); APP_ERROR_CHECK(err_code); nrf_drv_clock_lfclk_request(NULL); } static void rtc_config(float counte_time) { uint32_t err_code; printf("time set to = %.1f minutes",counte_time/60); //Initialize RTC instance nrf_drv_rtc_config_t config = NRF_DRV_RTC_DEFAULT_CONFIG; config.prescaler = 4095; err_code = nrf_drv_rtc_init(&rtc, &config, rtc_handler); APP_ERROR_CHECK(err_code); //Enable tick event & interrupt nrf_drv_rtc_tick_enable(&rtc,true); //Set compare channel to trigger interrupt after COMPARE_COUNTERTIME seconds err_code = nrf_drv_rtc_cc_set(&rtc,0,counte_time * 8,true); APP_ERROR_CHECK(err_code); //Power on RTC instance nrf_drv_rtc_enable(&rtc); } void Vibration_data_capture() { while ( RTC_FLAG != false) { twi_init(); NRF_TWI0->TASKS_RESUME = 1; ret_code_t err = NRF_SUCCESS; bool detected_device = verifyLis3dshAccelerometer(); if(!detected_device) { return 0; } uint8_t reg[2] = {0x00}; uint8_t temp=0x00; reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR; reg[1] = POWER_DOWN; err = writeTolis3dsh(®[0], sizeof(reg)); APP_ERROR_CHECK(err); err = readFromlis3dsh(MEMS_SENSOR_CTRL_REG4_ADDR,&temp,sizeof(temp)); APP_ERROR_CHECK(err); printf("tempvar SR= %x\n",temp); err = configureLis3dshAccelerometer(); APP_ERROR_CHECK(err); printf("GVR Sensor Moule Advertising....."); err = accelerometerDataAcquisition_SR_1_6_0_0(SAMPLE_NUMBER); printf("error = %d\n",err); APP_ERROR_CHECK(err); for(int i = 0 ; i < 10 ; i++) { NRF_LOG_INFO("\t%d\t%d\t%d",x_axis_data[i],y_axis_data[i],z_axis_data[i]); NRF_LOG_FLUSH(); } ct = 0; NRF_TWI0->TASKS_SUSPEND = 1; nrf_drv_twi_disable(&m_twi); nrf_drv_twi_uninit(&m_twi);nrf_delay_ms(5); bsp_indication_set(0); RTC_FLAG = false; } } int main(void) { bool erase_bonds; // uart_init() ret_code_t err = NRF_SUCCESS; uint8_t verify = 0x00; uint16_t length = 0x00; // Initialize. log_init(); timers_init(); buttons_leds_init(&erase_bonds); power_management_init(); ble_stack_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); // peer_manager_init(); NRF_LOG_INFO("\tSensor Module acquisition started.,\n"); // lfclk_config(); rtc_config(1*60); char Buffer[50]; bsp_indication_set(9); APP_TIMER_TICKS(2000); //printf("Sensor Module acquisition started."); #if 0 readFromlis3dsh(MEMS_SENSOR_TEMP_T_ADDR, &verify, sizeof(verify)); uint8_t data = two_compl_to_int16(verify); #endif APP_ERROR_CHECK(err); //NRF_LOG_INFO("Temparature : %d\n",data); NRF_LOG_INFO("\tX\tY\tZ"); int temp1,temp2; bsp_indication_set(0); // Start execution. //advertising_start(erase_bonds); int temp; // Enter main loop. Raw Data for (;;) { idle_state_handle(); if(RTC_FLAG == true) { Vibration_data_capture(); } } } // uint8_t reg[2] = {0x00}; // uint8_t temp=0x00; // reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR; // reg[1] = 0x01; // err = writeTolis3dsh(®[0], sizeof(reg)); // APP_ERROR_CHECK(err); // err = readFromlis3dsh(MEMS_SENSOR_CTRL_REG3_ADDR,&temp,sizeof(temp)); // APP_ERROR_CHECK(err); // printf("tempvar SR= %x\n",temp);
please help ASAP.
Thank You