This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

TWI-Rx not working for periodic capture

hi ,

 i am using nrf52832 dev kit , using which i am capturing accelerometer data from LIS3DSH for an RTC interrupt of 2 minutes, i.e., for every 2 minutes it should capture accelerometer data,

first interrupt it is working fine with capturing data , but for second time it is going for a breakpoint condition, not able to understand , can anyone please help

code is:

/**
 * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */

#include "our_service.h"

#include <stdbool.h>
#include <stdint.h>
#include <string.h>


#include "nordic_common.h"
#include "nrf.h"
#include "app_error.h"
#include "ble.h"
#include "ble_hci.h"
#include "ble_srv_common.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "app_timer.h"
#include "fds.h"
#include "peer_manager.h"
#include "bsp_btn_ble.h"
#include "sensorsim.h"
#include "ble_conn_state.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_uart.h"
//#include <float.h>
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "app_uart.h"
#include "our_service.h"
#include "nrf_drv_rtc.h"
#include "nrf_drv_clock.h"

//for accelerometer
#include "nrf_drv_twi.h"
#include "LIS3DSH.h"
#include "nrf_delay.h"
#include "FFT.h"
#include "app_util_bds.h"



#define DEVICE_NAME                     "GVR LIS3DSH_2"                       /**< Name of device. Will be included in the advertising data. */
#define MANUFACTURER_NAME               "NordicSemiconductor"                   /**< Manufacturer. Will be passed to Device Information Service. */
#define APP_ADV_INTERVAL                100                                     /**< The advertising interval (in units of 0.625 ms. This value corresponds to 187.5 ms). */

#define APP_ADV_DURATION                0                                  /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
#define APP_BLE_OBSERVER_PRIO           3                                       /**< Application's BLE observer priority. You shouldn't need to modify this value. */
#define APP_BLE_CONN_CFG_TAG            1                                       /**< A tag identifying the SoftDevice BLE configuration. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(8, UNIT_1_25_MS)        /**< Minimum acceptable connection interval (0.1 seconds). */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(15, UNIT_1_25_MS)        /**< Maximum acceptable connection interval (0.2 second). */
#define SLAVE_LATENCY                   0                                       /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)         /**< Connection supervisory timeout (4 seconds). */

#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                   /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                  /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                       /**< Number of attempts before giving up the connection parameter negotiation. */

#define SEC_PARAM_BOND                  1                                       /**< Perform bonding. */
#define SEC_PARAM_MITM                  0                                       /**< Man In The Middle protection not required. */
#define SEC_PARAM_LESC                  0                                       /**< LE Secure Connections not enabled. */
#define SEC_PARAM_KEYPRESS              0                                       /**< Keypress notifications not enabled. */
#define SEC_PARAM_IO_CAPABILITIES       BLE_GAP_IO_CAPS_NONE                    /**< No I/O capabilities. */
#define SEC_PARAM_OOB                   0                                       /**< Out Of Band data not available. */
#define SEC_PARAM_MIN_KEY_SIZE          7                                       /**< Minimum encryption key size. */
#define SEC_PARAM_MAX_KEY_SIZE          16                                      /**< Maximum encryption key size. */

#define DEAD_BEEF                       0xDEADBEEF                              /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

//#define SAMPLE_NUMBER  1*1600
#define PACKET_SIZE  12
bool RTC_FLAG = false;
#define SOFT_RESET    0


bool collect = false;

NRF_BLE_GATT_DEF(m_gatt);                                                       /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                         /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                             /**< Advertising module instance. */
//#define I2C_MEMS_SENSOR_BUS_ADDRESS 0x1e
static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID;                        /**< Handle of the current connection. */
extern bool wr_flag ;
extern bool Notify_flag ;
int16_t index = 0;
uint16_t wakeup = 0;
// FROM_SERVICE_TUTORIAL: Declare a service structure for our application
ble_os_t m_our_service;

#define APP_ERROR_CHECK1(ERR_CODE)                    \
        if (ERR_CODE != NRF_SUCCESS)                  \
        {                                              \
        	return ERR_CODE;                            \
        }



// OUR_JOB: Step 3.G, Declare an app_timer id variable and define our timer interval and define a timer interval

#define COMPARE_COUNTERTIME  (10UL)                                        /**< Get Compare event COMPARE_TIME seconds after the counter starts from 0. */

#ifdef BSP_LED_0
    #define TICK_EVENT_OUTPUT     BSP_LED_2                                 /**< Pin number for indicating tick event. */
#endif
#ifndef TICK_EVENT_OUTPUT
    #error "Please indicate output pin"
#endif
#ifdef BSP_LED_1
    #define COMPARE_EVENT_OUTPUT   BSP_LED_1                                /**< Pin number for indicating compare event. */
#endif
#ifndef COMPARE_EVENT_OUTPUT
    #error "Please indicate output pin"
#endif

const nrf_drv_rtc_t rtc = NRF_DRV_RTC_INSTANCE(2); /**< Declaring an instance of nrf_drv_rtc for RTC0. */

/** @brief: Function for handling the RTC0 interrupts.
 * Triggered on TICK and COMPARE0 match.
 */
static void rtc_handler(nrf_drv_rtc_int_type_t int_type)
{
    if (int_type == NRF_DRV_RTC_INT_COMPARE0)
    {
   
    int temp=nrf_drv_rtc_counter_get   (&rtc)    ;
printf("current value is=%d\r\n",temp/8);
        
        nrf_gpio_pin_toggle(COMPARE_EVENT_OUTPUT);

        nrf_drv_rtc_counter_clear(&rtc);
        nrf_drv_rtc_int_enable(&rtc, NRF_RTC_INT_COMPARE0_MASK); 
        RTC_FLAG = true;

        
    }
    else if (int_type == NRF_DRV_RTC_INT_TICK)
    {
     
        nrf_gpio_pin_toggle(TICK_EVENT_OUTPUT);
//        printf("%d\n", NRF_RTC0->COUNTER);
    }
}








// Use UUIDs for service(s) used in your application.
static ble_uuid_t m_adv_uuids[] =                                               /**< Universally unique service identifiers. */
{
    {BLE_UUID_OUR_SERVICE_UUID, BLE_UUID_TYPE_VENDOR_BEGIN}
};


static void advertising_start(bool erase_bonds);


/**@brief Callback function for asserts in the SoftDevice.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyze
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num   Line number of the failing ASSERT call.
 * @param[in] file_name  File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}



// ALREADY_DONE_FOR_YOU: This is a timer event handler
//static void timer_timeout_handler(void * p_context)
//{
//    // OUR_JOB: Step 3.F, Update temperature and characteristic value.

//}
#define MAX_TEST_DATA_BYTES     (15U)                /**< max number of test bytes to be used for tx and rx. */
#define UART_TX_BUF_SIZE 256                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE 256                         /**< UART RX buffer size. */



/**@brief Function for handling Peer Manager events.
 *
 * @param[in] p_evt  Peer Manager event.
 */
static void pm_evt_handler(pm_evt_t const * p_evt)
{
    ret_code_t err_code;

    switch (p_evt->evt_id)
    {
        case PM_EVT_BONDED_PEER_CONNECTED:
        {
            NRF_LOG_INFO("Connected to a previously bonded device.");
        } break;

        case PM_EVT_CONN_SEC_SUCCEEDED:
        {
            NRF_LOG_INFO("Connection secured: role: %d, conn_handle: 0x%x, procedure: %d.",
                         ble_conn_state_role(p_evt->conn_handle),
                         p_evt->conn_handle,
                         p_evt->params.conn_sec_succeeded.procedure);
        } break;

        case PM_EVT_CONN_SEC_FAILED:
        {
            /* Often, when securing fails, it shouldn't be restarted, for security reasons.
             * Other times, it can be restarted directly.
             * Sometimes it can be restarted, but only after changing some Security Parameters.
             * Sometimes, it cannot be restarted until the link is disconnected and reconnected.
             * Sometimes it is impossible, to secure the link, or the peer device does not support it.
             * How to handle this error is highly application dependent. */
        } break;

        case PM_EVT_CONN_SEC_CONFIG_REQ:
        {
            // Reject pairing request from an already bonded peer.
            pm_conn_sec_config_t conn_sec_config = {.allow_repairing = false};
            pm_conn_sec_config_reply(p_evt->conn_handle, &conn_sec_config);
        } break;

        case PM_EVT_STORAGE_FULL:
        {
            // Run garbage collection on the flash.
            err_code = fds_gc();
            if (err_code == FDS_ERR_NO_SPACE_IN_QUEUES)
            {
                // Retry.
            }
            else
            {
                APP_ERROR_CHECK(err_code);
            }
        } break;

        case PM_EVT_PEERS_DELETE_SUCCEEDED:
        {
            advertising_start(false);
        } break;

        case PM_EVT_PEER_DATA_UPDATE_FAILED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.peer_data_update_failed.error);
        } break;

        case PM_EVT_PEER_DELETE_FAILED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.peer_delete_failed.error);
        } break;

        case PM_EVT_PEERS_DELETE_FAILED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.peers_delete_failed_evt.error);
        } break;

        case PM_EVT_ERROR_UNEXPECTED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.error_unexpected.error);
        } break;

        case PM_EVT_CONN_SEC_START:
        case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED:
        case PM_EVT_PEER_DELETE_SUCCEEDED:
        case PM_EVT_LOCAL_DB_CACHE_APPLIED:
        case PM_EVT_LOCAL_DB_CACHE_APPLY_FAILED:
            // This can happen when the local DB has changed.
        case PM_EVT_SERVICE_CHANGED_IND_SENT:
        case PM_EVT_SERVICE_CHANGED_IND_CONFIRMED:
        default:
            break;
    }
}



/**@brief Function for the Timer initialization.
 *
 * @details Initializes the timer module. This creates and starts application timers.
 */
static void timers_init(void)
{
    // Initialize timer module.
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);


    // OUR_JOB: Step 3.H, Initiate our timer
		
}


/**@brief Function for the GAP initialization.
 *
 * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the
 *          device including the device name, appearance, and the preferred connection parameters.
 */
static void gap_params_init(void)
{
    ret_code_t              err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *)DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing the GATT module.
 */
static void gatt_init(void)
{
    ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}



/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{

	
	uint32_t         err_code;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    //FROM_SERVICE_TUTORIAL: Add code to initialize the services used by the application.
    our_service_init(&m_our_service);

}


/**@brief Function for handling the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module which
 *          are passed to the application.
 *          @note All this function does is to disconnect. This could have been done by simply
 *                setting the disconnect_on_fail config parameter, but instead we use the event
 *                handler mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    ret_code_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling a Connection Parameters error.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    ret_code_t             err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for starting timers.
 */
static void application_timers_start(void)
{

    // OUR_JOB: Step 3.I, Start our timer
		

}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    ret_code_t err_code;

    err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    ret_code_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_DIRECTED_HIGH_DUTY:
            NRF_LOG_INFO("Directed advertising.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_DIRECTED);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_FAST:
            NRF_LOG_INFO("Fast advertising.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_SLOW:
            NRF_LOG_INFO("Slow advertising.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_SLOW);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_FAST_WHITELIST:
            NRF_LOG_INFO("Fast advertising with whitelist.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_SLOW_WHITELIST:
            NRF_LOG_INFO("Slow advertising with whitelist.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST);
            APP_ERROR_CHECK(err_code);
            err_code = ble_advertising_restart_without_whitelist(&m_advertising);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_IDLE:
            err_code = bsp_indication_set(BSP_INDICATE_IDLE);
            APP_ERROR_CHECK(err_code);
            sleep_mode_enter();
            break;

        case BLE_ADV_EVT_WHITELIST_REQUEST:
        {
            ble_gap_addr_t whitelist_addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
            ble_gap_irk_t  whitelist_irks[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
            uint32_t       addr_cnt = BLE_GAP_WHITELIST_ADDR_MAX_COUNT;
            uint32_t       irk_cnt  = BLE_GAP_WHITELIST_ADDR_MAX_COUNT;

            err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt,
                                        whitelist_irks,  &irk_cnt);
            APP_ERROR_CHECK(err_code);
            NRF_LOG_DEBUG("pm_whitelist_get returns %d addr in whitelist and %d irk whitelist",
                           addr_cnt,
                           irk_cnt);

            // Apply the whitelist.
            err_code = ble_advertising_whitelist_reply(&m_advertising,
                                                       whitelist_addrs,
                                                       addr_cnt,
                                                       whitelist_irks,
                                                       irk_cnt);
            APP_ERROR_CHECK(err_code);
        }
        break;


        default:
            break;
    }
}



/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    ret_code_t err_code = NRF_SUCCESS;
		

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected.");
             index = 0;
            // LED indication will be changed when advertising starts.
 

            break;

        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected.");
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);

            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            NRF_LOG_DEBUG("GATT Client Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            NRF_LOG_DEBUG("GATT Server Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        default:
            // No implementation needed.
            break;
    }

		
}


/**@brief Function for initializing the BLE stack.
 *
 * @details Initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    NRF_SDH_BLE_OBSERVER(m_our_service_observer, APP_BLE_OBSERVER_PRIO, ble_our_service_on_ble_evt, (void*) &m_our_service);

    //OUR_JOB: Step 3.C Call ble_our_service_on_ble_evt() to do housekeeping of ble connections related to our service and characteristics
	
	
		

	
}


/**@brief Function for the Peer Manager initialization.
 */
static void peer_manager_init(void)
{
    ble_gap_sec_params_t sec_param;
    ret_code_t           err_code;

    err_code = pm_init();
    APP_ERROR_CHECK(err_code);

    memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));

    // Security parameters to be used for all security procedures.
    sec_param.bond           = SEC_PARAM_BOND;
    sec_param.mitm           = SEC_PARAM_MITM;
    sec_param.lesc           = SEC_PARAM_LESC;
    sec_param.keypress       = SEC_PARAM_KEYPRESS;
    sec_param.io_caps        = SEC_PARAM_IO_CAPABILITIES;
    sec_param.oob            = SEC_PARAM_OOB;
    sec_param.min_key_size   = SEC_PARAM_MIN_KEY_SIZE;
    sec_param.max_key_size   = SEC_PARAM_MAX_KEY_SIZE;
    sec_param.kdist_own.enc  = 1;
    sec_param.kdist_own.id   = 1;
    sec_param.kdist_peer.enc = 1;
    sec_param.kdist_peer.id  = 1;

    err_code = pm_sec_params_set(&sec_param);
    APP_ERROR_CHECK(err_code);

    err_code = pm_register(pm_evt_handler);
    APP_ERROR_CHECK(err_code);
}


/**@brief Clear bond information from persistent storage.
 */
static void delete_bonds(void)
{
    ret_code_t err_code;

    NRF_LOG_INFO("Erase bonds!");

    err_code = pm_peers_delete();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated when button is pressed.
 */
static void bsp_event_handler(bsp_event_t event)
{
    ret_code_t err_code;

    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break; // BSP_EVENT_SLEEP

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break; // BSP_EVENT_DISCONNECT

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break; // BSP_EVENT_KEY_0
        case BSP_EVENT_KEY_2:
         err_code = bsp_indication_set( 3);
         nrf_delay_us(ACC_DELAY_2_0);
         collect =true;
          APP_ERROR_CHECK(err_code);
        printf("key3 pressed\n");
        err_code = bsp_indication_set( BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);
        

        break;

        default:
            break;
    }
}


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    ret_code_t             err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type               = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance      = true;
    init.advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
    init.config.ble_adv_whitelist_enabled          = true;
    init.config.ble_adv_directed_high_duty_enabled = true;


	
		init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
		init.srdata.uuids_complete.p_uuids = m_adv_uuids;
		
	
    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;

    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    ret_code_t err_code;
    bsp_event_t startup_event;

    err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(bool erase_bonds)
{
    if (erase_bonds == true)
    {
        delete_bonds();
        // Advertising is started by PM_EVT_PEERS_DELETED_SUCEEDED event
    }
    else
    {
        ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);

        APP_ERROR_CHECK(err_code);
    }
}

#define APP_ERROR_CHECK1(ERR_CODE)                    \
        if (ERR_CODE != NRF_SUCCESS)                  \
        {                                              \
        	return ERR_CODE;                            \
        }


/* TWI instance ID. */
#if TWI0_ENABLED
#define TWI_INSTANCE_ID     0
#elif TWI1_ENABLED
#define TWI_INSTANCE_ID     1
#endif

 /* Number of possible TWI addresses. */
 #define TWI_ADDRESSES      127


 //#define MEMS_SENSOR_WHO_AM_I_ADDR      0x0F

/* TWI instance. */
static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(0);

ret_code_t err_code = NRF_SUCCESS;

uint16_t sampleCntTracker = 0x00;



//typedef struct
//{
//   float fReal;
//   float fImag;
//}stXComplex;


#include <math.h>

int16_t x_axis_data[SAMPLE_NUMBER] = {0x00};
int16_t y_axis_data[SAMPLE_NUMBER] = {0x00};
int16_t z_axis_data[SAMPLE_NUMBER] = {0x00};


/**
 * @brief TWI initialization.
 */
void twi_init (void)
{
    ret_code_t err_code;

    const nrf_drv_twi_config_t twi_config = {
       .scl                = ARDUINO_SCL_PIN,
       .sda                = ARDUINO_SDA_PIN,
       .frequency          = NRF_DRV_TWI_FREQ_400K,
       .interrupt_priority = APP_IRQ_PRIORITY_LOW,
       .clear_bus_init     = true
    };

    err_code = nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL);
    APP_ERROR_CHECK(err_code);

    nrf_drv_twi_enable(&m_twi);
}
int ct = 0;
ret_code_t readFromlis3dsh(uint8_t reg, uint8_t* p_dest, uint8_t bytes)
{
    ret_code_t err = NRF_SUCCESS;
    err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, &reg, sizeof(reg), false);
    if(ct <= 10)
    {printf("error = twi tx %d\n",err);}
    APP_ERROR_CHECK1(err);
    nrf_delay_us(4);
    err = nrf_drv_twi_rx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, p_dest, bytes);
    APP_ERROR_CHECK1(err);
    ct++;
    if(ct <= 10)

    {printf("error = twi rx %d---->%d\n",err,ct);}
    return NRF_SUCCESS;
}

ret_code_t writeTolis3dsh(uint8_t* const data, uint8_t bytes)
{
    ret_code_t err = NRF_SUCCESS;
    err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, data, sizeof(data), false);
    APP_ERROR_CHECK1(err);
    return NRF_SUCCESS;
}

bool verifyLis3dshAccelerometer()
{
    uint8_t verify = 0x00;
    readFromlis3dsh(MEMS_SENSOR_WHO_AM_I_ADDR, &verify, sizeof(verify));
    if(verify == MEMS_SENSOR_WHO_AM_I_VALUE)
    {
        return true;
    }
    return false;
}

ret_code_t noOfSamplesStoredinfifo(uint8_t* samplesCnt)
{
    ret_code_t err = NRF_SUCCESS;
    err = readFromlis3dsh(MEMS_SENSOR_FIFO_SRC_ADDR, samplesCnt, sizeof(uint8_t));
    APP_ERROR_CHECK(err);
}

ret_code_t wakeUpStateMachineConfiguration()
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t toSend[2] = {0x00};

    toSend[0] = MEMS_SENSOR_CTRL_REG1_ADDR;
    toSend[1] = 0x01;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
    toSend[1] = 0x48;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
    toSend[1] = 0x97;/* 1.6k sampling rate is selected*/
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    toSend[1] = 0x00;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = THRS1_1;
    toSend[1] = 0x65;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = ST1_1;
    toSend[1] = 0x05;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = ST1_2;
    toSend[1] = 0x11;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MASK1_B;
    toSend[1] = 0xFC;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MASK1_A;
    toSend[1] = 0xFC;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = SETT1;
    toSend[1] = 0x01;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    /* FIFO mode selection */
    memset(toSend, 0x00, sizeof(toSend));
    toSend[0] = MEMS_SENSOR_CTRL_REG6_ADDR;
    toSend[1] |= (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT);
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    return NRF_SUCCESS;
}

int16_t two_compl_to_int16(uint16_t two_compl_value)
{
    int16_t int16_value = 0;

    /* conversion */
    if (two_compl_value > 32768) {
        int16_value = (int16_t)(-(((~two_compl_value) & (uint16_t)(0xFFFF)) + (uint16_t)(1)));
    } else {
        int16_value = (int16_t)(two_compl_value);
    }

    return int16_value;
}


ret_code_t ReadOutputRegistersOfAccelerometerNew()
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t vibData[120] = {0x00};

    err = readFromlis3dsh(MEMS_SENSOR_OUT_X_L_ADDR, &vibData[0], sizeof(vibData));
//    printf("error read Lis3 = %d\n",err);
    APP_ERROR_CHECK(err);

    for(uint16_t i = 0, j = 0; (j < SAMPLE_READ_ONE_ITERATION) && (i < (uint16_t)(SAMPLE_READ_ONE_ITERATION*6)) ; i = (uint16_t)(i+6), j++)
    {
        x_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+1]<<8) | (uint16_t)vibData[i]);
        y_axis_data[sampleCntTracker + j]= two_compl_to_int16(((uint16_t)vibData[i+3]<<8) | (uint16_t)vibData[i+2]);
        z_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+5]<<8) | (uint16_t)vibData[i+4]);

        x_axis_data[sampleCntTracker + j] = (int16_t)(x_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
        y_axis_data[sampleCntTracker + j] = (int16_t)(y_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
        z_axis_data[sampleCntTracker + j] = (int16_t)(z_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
    }

    sampleCntTracker = (uint16_t)(sampleCntTracker + SAMPLE_READ_ONE_ITERATION);
    return NRF_SUCCESS;
}

//uint32_t timeCapture = 0x00;
//uint32_t time_ticks = 0x00;
//const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0);

//void startTimer()
//{
//    uint32_t time_ms = 8000; //Time(in miliseconds) between consecutive compare events.
//    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
//    err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, NULL);
//    APP_ERROR_CHECK(err_code);
//    time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms);
//
//    nrf_drv_timer_extended_compare(
//         &TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);
//    nrf_drv_timer_enable(&TIMER_LED);    
//}

ret_code_t accelerometerDataAcquisition_SR_1_6_0_0(uint16_t sampleCount)
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t fifoSamples = 0x00;
    memset(x_axis_data,0,sizeof(x_axis_data));
    memset(y_axis_data,0,sizeof(y_axis_data));
    memset(z_axis_data,0,sizeof(z_axis_data));
    //startTimer();
    //nrf_delay_ms(50);
    //timeCapture = nrfx_timer_capture(&TIMER_LED, 0);
    //nrf_delay_us(ACC_DELAY_2_0);
    //nrf_delay_us(10000);
    //startTimer();

    nrf_delay_us(ACC_DELAY_2_0);
    err = noOfSamplesStoredinfifo(&fifoSamples);
    printf("error  nsamples= %d\n",fifoSamples);
    APP_ERROR_CHECK1(err);
    for(uint16_t it_cnt = 0x00; it_cnt < (sampleCount)/20; it_cnt++)
    {
        if(it_cnt)
        {
            nrf_delay_us(SEC_IT_DELAY_ODR_1_6_0_0);
        }
        err = ReadOutputRegistersOfAccelerometerNew();
//        printf("error = read %d\n",err);
        APP_ERROR_CHECK1(err);
    }
      
    return NRF_SUCCESS;
}

//void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
//{
//    APP_ERROR_CHECK(NRF_LOG_INIT(NULL));
//    NRF_LOG_DEFAULT_BACKENDS_INIT();
//    NRF_LOG_INFO("INTERRUPT OCCURED");
//    NRF_LOG_FLUSH();
//}

//ret_code_t wakeUpStateMachineInterruptConfiguration(void)
//{
//    ret_code_t err = NRF_SUCCESS;
//    nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true);
//    in_config.pull = NRF_GPIO_PIN_PULLUP;
//    err = nrf_drv_gpiote_in_init(WAKE_UP_INT_PIN, &in_config, in_pin_handler);
//    APP_ERROR_CHECK1(err);    
//    nrf_drv_gpiote_in_event_enable(WAKE_UP_INT_PIN, true);
//    return err;
//}



//void timer_initializations()
//{
//
//
//    
//}


//const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0);

int8_t address = 0x00;

ret_code_t configureLis3dshAccelerometer()
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t reg[2] = {0x00};

    reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
    reg[1] = DATARATE_1600 | XYZ_ENABLE;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
#if 0
    reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
    reg[1] |= XYZ_ENABLE;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

#if SOFT_RESET

    reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
    reg[1] = SOFT_RESET;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

#endif
    reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
    reg[1] = 0x00;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);


    reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    reg[1] |= FILTER_BW_800;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

    reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    reg[1] |= FULLSCALE_2;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

    reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    reg[1] |= (SERIALINTERFACE_4WIRE);
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
#endif
    reg[0] = MEMS_SENSOR_CTRL_REG6_ADDR;
    reg[1] = (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT);
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
    
    reg[0] = MEMS_SENSOR_FIFO_CTRL_ADDR;
    //reg[1] |= FIFO_STREAM_MODE;
    reg[1]  = 0x54;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
//    uint8_t no = 0x00;   
//    err = noOfSamplesStoredinfifo(&no);
//    APP_ERROR_CHECK(err);

}

void uart_error_handle(app_uart_evt_t * p_event)
{
    if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR)
    {
        APP_ERROR_HANDLER(p_event->data.error_communication);
    }
    else if (p_event->evt_type == APP_UART_FIFO_ERROR)
    {
        APP_ERROR_HANDLER(p_event->data.error_code);
    }
}
/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UART_BAUDRATE_115200
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_error_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */

#define UART_HWFC APP_UART_FLOW_CONTROL_ENABLED
uint8_t data1 = 0x0F;  

static void lfclk_config(void)
{
    ret_code_t err_code = nrf_drv_clock_init();
    APP_ERROR_CHECK(err_code);

    nrf_drv_clock_lfclk_request(NULL);
}




static void rtc_config(float counte_time)
{
    uint32_t err_code;
    printf("time set to = %.1f minutes",counte_time/60);

    //Initialize RTC instance
    nrf_drv_rtc_config_t config = NRF_DRV_RTC_DEFAULT_CONFIG;
    config.prescaler = 4095;
    err_code = nrf_drv_rtc_init(&rtc, &config, rtc_handler);
    APP_ERROR_CHECK(err_code);

    //Enable tick event & interrupt
    nrf_drv_rtc_tick_enable(&rtc,true);

    //Set compare channel to trigger interrupt after COMPARE_COUNTERTIME seconds
    err_code = nrf_drv_rtc_cc_set(&rtc,0,counte_time * 8,true);
    APP_ERROR_CHECK(err_code);

    //Power on RTC instance
    nrf_drv_rtc_enable(&rtc);
}


void Vibration_data_capture()
{

while ( RTC_FLAG  != false)
{
twi_init();
NRF_TWI0->TASKS_RESUME = 1; 
   ret_code_t err = NRF_SUCCESS;
 bool detected_device = verifyLis3dshAccelerometer();
            if(!detected_device)
            {
                return 0;
            }
                    uint8_t reg[2] = {0x00};
                     uint8_t temp=0x00;
                     reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
                      reg[1] = POWER_DOWN;
                      err = writeTolis3dsh(&reg[0], sizeof(reg));
                       APP_ERROR_CHECK(err);
                     err = readFromlis3dsh(MEMS_SENSOR_CTRL_REG4_ADDR,&temp,sizeof(temp));
                      APP_ERROR_CHECK(err);
                     printf("tempvar  SR= %x\n",temp);

             err = configureLis3dshAccelerometer();
            APP_ERROR_CHECK(err);
            printf("GVR Sensor Moule Advertising.....");
             err = accelerometerDataAcquisition_SR_1_6_0_0(SAMPLE_NUMBER);
             printf("error = %d\n",err);
              APP_ERROR_CHECK(err);
                 for(int i = 0 ; i < 10 ; i++)
            {     
                  NRF_LOG_INFO("\t%d\t%d\t%d",x_axis_data[i],y_axis_data[i],z_axis_data[i]);
                  NRF_LOG_FLUSH();
    
            }
            ct = 0;
             NRF_TWI0->TASKS_SUSPEND = 1;
             
            nrf_drv_twi_disable(&m_twi);
            nrf_drv_twi_uninit(&m_twi);nrf_delay_ms(5);
            
           

            bsp_indication_set(0);
            RTC_FLAG = false;
   }

}

int main(void)
{
    bool erase_bonds;
//    uart_init()
    ret_code_t err = NRF_SUCCESS;
    uint8_t verify = 0x00;
    uint16_t length = 0x00;
     // Initialize.
     log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);
    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();
//    peer_manager_init();
    NRF_LOG_INFO("\tSensor Module acquisition started.,\n");
    
//     lfclk_config();

    rtc_config(1*60);
   
    char Buffer[50];

    
    
 bsp_indication_set(9);
   
    APP_TIMER_TICKS(2000); 
    //printf("Sensor Module acquisition started.");
    #if 0
    readFromlis3dsh(MEMS_SENSOR_TEMP_T_ADDR, &verify, sizeof(verify));
    uint8_t data = two_compl_to_int16(verify);
    #endif
   
    APP_ERROR_CHECK(err);
    //NRF_LOG_INFO("Temparature : %d\n",data);
    NRF_LOG_INFO("\tX\tY\tZ");
     


    int temp1,temp2;
    bsp_indication_set(0);
    // Start execution.
    
    //advertising_start(erase_bonds);
    int temp;
   

    // Enter main loop.   Raw Data
    for (;;)
    {
     
       
       idle_state_handle();
       if(RTC_FLAG == true)
       {
            Vibration_data_capture();
       }


    }
   
}





//            uint8_t reg[2] = {0x00};
//                     uint8_t temp=0x00;
//                     reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
//                      reg[1] = 0x01;
//                      err = writeTolis3dsh(&reg[0], sizeof(reg));
//                       APP_ERROR_CHECK(err);
//                     err = readFromlis3dsh(MEMS_SENSOR_CTRL_REG3_ADDR,&temp,sizeof(temp));
//                      APP_ERROR_CHECK(err);
//                     printf("tempvar  SR= %x\n",temp);

please help ASAP.

Thank You

Parents Reply
  • Hello,

    Then how do you determine that it is hitting a breakpoint condition?

    Are you receiving any information on the UART or RTT at all? (before it hits the breakpoint condition?)

    Try to define DEBUG in your preprocessor defines, and see if you get any information in the log when the breakpoint condition is hit.

    Is the timer handler hitting every two minutes? Or is the problem that the timeout handler is not called?

Children
Related