This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

TWI-Rx not working for periodic capture

hi ,

 i am using nrf52832 dev kit , using which i am capturing accelerometer data from LIS3DSH for an RTC interrupt of 2 minutes, i.e., for every 2 minutes it should capture accelerometer data,

first interrupt it is working fine with capturing data , but for second time it is going for a breakpoint condition, not able to understand , can anyone please help

code is:

/**
 * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */

#include "our_service.h"

#include <stdbool.h>
#include <stdint.h>
#include <string.h>


#include "nordic_common.h"
#include "nrf.h"
#include "app_error.h"
#include "ble.h"
#include "ble_hci.h"
#include "ble_srv_common.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "app_timer.h"
#include "fds.h"
#include "peer_manager.h"
#include "bsp_btn_ble.h"
#include "sensorsim.h"
#include "ble_conn_state.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_uart.h"
//#include <float.h>
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "app_uart.h"
#include "our_service.h"
#include "nrf_drv_rtc.h"
#include "nrf_drv_clock.h"

//for accelerometer
#include "nrf_drv_twi.h"
#include "LIS3DSH.h"
#include "nrf_delay.h"
#include "FFT.h"
#include "app_util_bds.h"



#define DEVICE_NAME                     "GVR LIS3DSH_2"                       /**< Name of device. Will be included in the advertising data. */
#define MANUFACTURER_NAME               "NordicSemiconductor"                   /**< Manufacturer. Will be passed to Device Information Service. */
#define APP_ADV_INTERVAL                100                                     /**< The advertising interval (in units of 0.625 ms. This value corresponds to 187.5 ms). */

#define APP_ADV_DURATION                0                                  /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
#define APP_BLE_OBSERVER_PRIO           3                                       /**< Application's BLE observer priority. You shouldn't need to modify this value. */
#define APP_BLE_CONN_CFG_TAG            1                                       /**< A tag identifying the SoftDevice BLE configuration. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(8, UNIT_1_25_MS)        /**< Minimum acceptable connection interval (0.1 seconds). */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(15, UNIT_1_25_MS)        /**< Maximum acceptable connection interval (0.2 second). */
#define SLAVE_LATENCY                   0                                       /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)         /**< Connection supervisory timeout (4 seconds). */

#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                   /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                  /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                       /**< Number of attempts before giving up the connection parameter negotiation. */

#define SEC_PARAM_BOND                  1                                       /**< Perform bonding. */
#define SEC_PARAM_MITM                  0                                       /**< Man In The Middle protection not required. */
#define SEC_PARAM_LESC                  0                                       /**< LE Secure Connections not enabled. */
#define SEC_PARAM_KEYPRESS              0                                       /**< Keypress notifications not enabled. */
#define SEC_PARAM_IO_CAPABILITIES       BLE_GAP_IO_CAPS_NONE                    /**< No I/O capabilities. */
#define SEC_PARAM_OOB                   0                                       /**< Out Of Band data not available. */
#define SEC_PARAM_MIN_KEY_SIZE          7                                       /**< Minimum encryption key size. */
#define SEC_PARAM_MAX_KEY_SIZE          16                                      /**< Maximum encryption key size. */

#define DEAD_BEEF                       0xDEADBEEF                              /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

//#define SAMPLE_NUMBER  1*1600
#define PACKET_SIZE  12
bool RTC_FLAG = false;
#define SOFT_RESET    0


bool collect = false;

NRF_BLE_GATT_DEF(m_gatt);                                                       /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                         /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                             /**< Advertising module instance. */
//#define I2C_MEMS_SENSOR_BUS_ADDRESS 0x1e
static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID;                        /**< Handle of the current connection. */
extern bool wr_flag ;
extern bool Notify_flag ;
int16_t index = 0;
uint16_t wakeup = 0;
// FROM_SERVICE_TUTORIAL: Declare a service structure for our application
ble_os_t m_our_service;

#define APP_ERROR_CHECK1(ERR_CODE)                    \
        if (ERR_CODE != NRF_SUCCESS)                  \
        {                                              \
        	return ERR_CODE;                            \
        }



// OUR_JOB: Step 3.G, Declare an app_timer id variable and define our timer interval and define a timer interval

#define COMPARE_COUNTERTIME  (10UL)                                        /**< Get Compare event COMPARE_TIME seconds after the counter starts from 0. */

#ifdef BSP_LED_0
    #define TICK_EVENT_OUTPUT     BSP_LED_2                                 /**< Pin number for indicating tick event. */
#endif
#ifndef TICK_EVENT_OUTPUT
    #error "Please indicate output pin"
#endif
#ifdef BSP_LED_1
    #define COMPARE_EVENT_OUTPUT   BSP_LED_1                                /**< Pin number for indicating compare event. */
#endif
#ifndef COMPARE_EVENT_OUTPUT
    #error "Please indicate output pin"
#endif

const nrf_drv_rtc_t rtc = NRF_DRV_RTC_INSTANCE(2); /**< Declaring an instance of nrf_drv_rtc for RTC0. */

/** @brief: Function for handling the RTC0 interrupts.
 * Triggered on TICK and COMPARE0 match.
 */
static void rtc_handler(nrf_drv_rtc_int_type_t int_type)
{
    if (int_type == NRF_DRV_RTC_INT_COMPARE0)
    {
   
    int temp=nrf_drv_rtc_counter_get   (&rtc)    ;
printf("current value is=%d\r\n",temp/8);
        
        nrf_gpio_pin_toggle(COMPARE_EVENT_OUTPUT);

        nrf_drv_rtc_counter_clear(&rtc);
        nrf_drv_rtc_int_enable(&rtc, NRF_RTC_INT_COMPARE0_MASK); 
        RTC_FLAG = true;

        
    }
    else if (int_type == NRF_DRV_RTC_INT_TICK)
    {
     
        nrf_gpio_pin_toggle(TICK_EVENT_OUTPUT);
//        printf("%d\n", NRF_RTC0->COUNTER);
    }
}








// Use UUIDs for service(s) used in your application.
static ble_uuid_t m_adv_uuids[] =                                               /**< Universally unique service identifiers. */
{
    {BLE_UUID_OUR_SERVICE_UUID, BLE_UUID_TYPE_VENDOR_BEGIN}
};


static void advertising_start(bool erase_bonds);


/**@brief Callback function for asserts in the SoftDevice.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyze
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num   Line number of the failing ASSERT call.
 * @param[in] file_name  File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}



// ALREADY_DONE_FOR_YOU: This is a timer event handler
//static void timer_timeout_handler(void * p_context)
//{
//    // OUR_JOB: Step 3.F, Update temperature and characteristic value.

//}
#define MAX_TEST_DATA_BYTES     (15U)                /**< max number of test bytes to be used for tx and rx. */
#define UART_TX_BUF_SIZE 256                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE 256                         /**< UART RX buffer size. */



/**@brief Function for handling Peer Manager events.
 *
 * @param[in] p_evt  Peer Manager event.
 */
static void pm_evt_handler(pm_evt_t const * p_evt)
{
    ret_code_t err_code;

    switch (p_evt->evt_id)
    {
        case PM_EVT_BONDED_PEER_CONNECTED:
        {
            NRF_LOG_INFO("Connected to a previously bonded device.");
        } break;

        case PM_EVT_CONN_SEC_SUCCEEDED:
        {
            NRF_LOG_INFO("Connection secured: role: %d, conn_handle: 0x%x, procedure: %d.",
                         ble_conn_state_role(p_evt->conn_handle),
                         p_evt->conn_handle,
                         p_evt->params.conn_sec_succeeded.procedure);
        } break;

        case PM_EVT_CONN_SEC_FAILED:
        {
            /* Often, when securing fails, it shouldn't be restarted, for security reasons.
             * Other times, it can be restarted directly.
             * Sometimes it can be restarted, but only after changing some Security Parameters.
             * Sometimes, it cannot be restarted until the link is disconnected and reconnected.
             * Sometimes it is impossible, to secure the link, or the peer device does not support it.
             * How to handle this error is highly application dependent. */
        } break;

        case PM_EVT_CONN_SEC_CONFIG_REQ:
        {
            // Reject pairing request from an already bonded peer.
            pm_conn_sec_config_t conn_sec_config = {.allow_repairing = false};
            pm_conn_sec_config_reply(p_evt->conn_handle, &conn_sec_config);
        } break;

        case PM_EVT_STORAGE_FULL:
        {
            // Run garbage collection on the flash.
            err_code = fds_gc();
            if (err_code == FDS_ERR_NO_SPACE_IN_QUEUES)
            {
                // Retry.
            }
            else
            {
                APP_ERROR_CHECK(err_code);
            }
        } break;

        case PM_EVT_PEERS_DELETE_SUCCEEDED:
        {
            advertising_start(false);
        } break;

        case PM_EVT_PEER_DATA_UPDATE_FAILED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.peer_data_update_failed.error);
        } break;

        case PM_EVT_PEER_DELETE_FAILED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.peer_delete_failed.error);
        } break;

        case PM_EVT_PEERS_DELETE_FAILED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.peers_delete_failed_evt.error);
        } break;

        case PM_EVT_ERROR_UNEXPECTED:
        {
            // Assert.
            APP_ERROR_CHECK(p_evt->params.error_unexpected.error);
        } break;

        case PM_EVT_CONN_SEC_START:
        case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED:
        case PM_EVT_PEER_DELETE_SUCCEEDED:
        case PM_EVT_LOCAL_DB_CACHE_APPLIED:
        case PM_EVT_LOCAL_DB_CACHE_APPLY_FAILED:
            // This can happen when the local DB has changed.
        case PM_EVT_SERVICE_CHANGED_IND_SENT:
        case PM_EVT_SERVICE_CHANGED_IND_CONFIRMED:
        default:
            break;
    }
}



/**@brief Function for the Timer initialization.
 *
 * @details Initializes the timer module. This creates and starts application timers.
 */
static void timers_init(void)
{
    // Initialize timer module.
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);


    // OUR_JOB: Step 3.H, Initiate our timer
		
}


/**@brief Function for the GAP initialization.
 *
 * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the
 *          device including the device name, appearance, and the preferred connection parameters.
 */
static void gap_params_init(void)
{
    ret_code_t              err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *)DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing the GATT module.
 */
static void gatt_init(void)
{
    ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}



/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{

	
	uint32_t         err_code;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    //FROM_SERVICE_TUTORIAL: Add code to initialize the services used by the application.
    our_service_init(&m_our_service);

}


/**@brief Function for handling the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module which
 *          are passed to the application.
 *          @note All this function does is to disconnect. This could have been done by simply
 *                setting the disconnect_on_fail config parameter, but instead we use the event
 *                handler mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    ret_code_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling a Connection Parameters error.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    ret_code_t             err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for starting timers.
 */
static void application_timers_start(void)
{

    // OUR_JOB: Step 3.I, Start our timer
		

}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    ret_code_t err_code;

    err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    ret_code_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_DIRECTED_HIGH_DUTY:
            NRF_LOG_INFO("Directed advertising.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_DIRECTED);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_FAST:
            NRF_LOG_INFO("Fast advertising.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_SLOW:
            NRF_LOG_INFO("Slow advertising.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_SLOW);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_FAST_WHITELIST:
            NRF_LOG_INFO("Fast advertising with whitelist.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_SLOW_WHITELIST:
            NRF_LOG_INFO("Slow advertising with whitelist.");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST);
            APP_ERROR_CHECK(err_code);
            err_code = ble_advertising_restart_without_whitelist(&m_advertising);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_IDLE:
            err_code = bsp_indication_set(BSP_INDICATE_IDLE);
            APP_ERROR_CHECK(err_code);
            sleep_mode_enter();
            break;

        case BLE_ADV_EVT_WHITELIST_REQUEST:
        {
            ble_gap_addr_t whitelist_addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
            ble_gap_irk_t  whitelist_irks[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
            uint32_t       addr_cnt = BLE_GAP_WHITELIST_ADDR_MAX_COUNT;
            uint32_t       irk_cnt  = BLE_GAP_WHITELIST_ADDR_MAX_COUNT;

            err_code = pm_whitelist_get(whitelist_addrs, &addr_cnt,
                                        whitelist_irks,  &irk_cnt);
            APP_ERROR_CHECK(err_code);
            NRF_LOG_DEBUG("pm_whitelist_get returns %d addr in whitelist and %d irk whitelist",
                           addr_cnt,
                           irk_cnt);

            // Apply the whitelist.
            err_code = ble_advertising_whitelist_reply(&m_advertising,
                                                       whitelist_addrs,
                                                       addr_cnt,
                                                       whitelist_irks,
                                                       irk_cnt);
            APP_ERROR_CHECK(err_code);
        }
        break;


        default:
            break;
    }
}



/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    ret_code_t err_code = NRF_SUCCESS;
		

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected.");
             index = 0;
            // LED indication will be changed when advertising starts.
 

            break;

        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected.");
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);

            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            NRF_LOG_DEBUG("GATT Client Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            NRF_LOG_DEBUG("GATT Server Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        default:
            // No implementation needed.
            break;
    }

		
}


/**@brief Function for initializing the BLE stack.
 *
 * @details Initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    NRF_SDH_BLE_OBSERVER(m_our_service_observer, APP_BLE_OBSERVER_PRIO, ble_our_service_on_ble_evt, (void*) &m_our_service);

    //OUR_JOB: Step 3.C Call ble_our_service_on_ble_evt() to do housekeeping of ble connections related to our service and characteristics
	
	
		

	
}


/**@brief Function for the Peer Manager initialization.
 */
static void peer_manager_init(void)
{
    ble_gap_sec_params_t sec_param;
    ret_code_t           err_code;

    err_code = pm_init();
    APP_ERROR_CHECK(err_code);

    memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));

    // Security parameters to be used for all security procedures.
    sec_param.bond           = SEC_PARAM_BOND;
    sec_param.mitm           = SEC_PARAM_MITM;
    sec_param.lesc           = SEC_PARAM_LESC;
    sec_param.keypress       = SEC_PARAM_KEYPRESS;
    sec_param.io_caps        = SEC_PARAM_IO_CAPABILITIES;
    sec_param.oob            = SEC_PARAM_OOB;
    sec_param.min_key_size   = SEC_PARAM_MIN_KEY_SIZE;
    sec_param.max_key_size   = SEC_PARAM_MAX_KEY_SIZE;
    sec_param.kdist_own.enc  = 1;
    sec_param.kdist_own.id   = 1;
    sec_param.kdist_peer.enc = 1;
    sec_param.kdist_peer.id  = 1;

    err_code = pm_sec_params_set(&sec_param);
    APP_ERROR_CHECK(err_code);

    err_code = pm_register(pm_evt_handler);
    APP_ERROR_CHECK(err_code);
}


/**@brief Clear bond information from persistent storage.
 */
static void delete_bonds(void)
{
    ret_code_t err_code;

    NRF_LOG_INFO("Erase bonds!");

    err_code = pm_peers_delete();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated when button is pressed.
 */
static void bsp_event_handler(bsp_event_t event)
{
    ret_code_t err_code;

    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break; // BSP_EVENT_SLEEP

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break; // BSP_EVENT_DISCONNECT

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break; // BSP_EVENT_KEY_0
        case BSP_EVENT_KEY_2:
         err_code = bsp_indication_set( 3);
         nrf_delay_us(ACC_DELAY_2_0);
         collect =true;
          APP_ERROR_CHECK(err_code);
        printf("key3 pressed\n");
        err_code = bsp_indication_set( BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);
        

        break;

        default:
            break;
    }
}


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    ret_code_t             err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type               = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance      = true;
    init.advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
    init.config.ble_adv_whitelist_enabled          = true;
    init.config.ble_adv_directed_high_duty_enabled = true;


	
		init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
		init.srdata.uuids_complete.p_uuids = m_adv_uuids;
		
	
    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;

    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    ret_code_t err_code;
    bsp_event_t startup_event;

    err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(bool erase_bonds)
{
    if (erase_bonds == true)
    {
        delete_bonds();
        // Advertising is started by PM_EVT_PEERS_DELETED_SUCEEDED event
    }
    else
    {
        ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);

        APP_ERROR_CHECK(err_code);
    }
}

#define APP_ERROR_CHECK1(ERR_CODE)                    \
        if (ERR_CODE != NRF_SUCCESS)                  \
        {                                              \
        	return ERR_CODE;                            \
        }


/* TWI instance ID. */
#if TWI0_ENABLED
#define TWI_INSTANCE_ID     0
#elif TWI1_ENABLED
#define TWI_INSTANCE_ID     1
#endif

 /* Number of possible TWI addresses. */
 #define TWI_ADDRESSES      127


 //#define MEMS_SENSOR_WHO_AM_I_ADDR      0x0F

/* TWI instance. */
static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(0);

ret_code_t err_code = NRF_SUCCESS;

uint16_t sampleCntTracker = 0x00;



//typedef struct
//{
//   float fReal;
//   float fImag;
//}stXComplex;


#include <math.h>

int16_t x_axis_data[SAMPLE_NUMBER] = {0x00};
int16_t y_axis_data[SAMPLE_NUMBER] = {0x00};
int16_t z_axis_data[SAMPLE_NUMBER] = {0x00};


/**
 * @brief TWI initialization.
 */
void twi_init (void)
{
    ret_code_t err_code;

    const nrf_drv_twi_config_t twi_config = {
       .scl                = ARDUINO_SCL_PIN,
       .sda                = ARDUINO_SDA_PIN,
       .frequency          = NRF_DRV_TWI_FREQ_400K,
       .interrupt_priority = APP_IRQ_PRIORITY_LOW,
       .clear_bus_init     = true
    };

    err_code = nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL);
    APP_ERROR_CHECK(err_code);

    nrf_drv_twi_enable(&m_twi);
}
int ct = 0;
ret_code_t readFromlis3dsh(uint8_t reg, uint8_t* p_dest, uint8_t bytes)
{
    ret_code_t err = NRF_SUCCESS;
    err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, &reg, sizeof(reg), false);
    if(ct <= 10)
    {printf("error = twi tx %d\n",err);}
    APP_ERROR_CHECK1(err);
    nrf_delay_us(4);
    err = nrf_drv_twi_rx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, p_dest, bytes);
    APP_ERROR_CHECK1(err);
    ct++;
    if(ct <= 10)

    {printf("error = twi rx %d---->%d\n",err,ct);}
    return NRF_SUCCESS;
}

ret_code_t writeTolis3dsh(uint8_t* const data, uint8_t bytes)
{
    ret_code_t err = NRF_SUCCESS;
    err = nrf_drv_twi_tx(&m_twi, I2C_MEMS_SENSOR_BUS_ADDRESS, data, sizeof(data), false);
    APP_ERROR_CHECK1(err);
    return NRF_SUCCESS;
}

bool verifyLis3dshAccelerometer()
{
    uint8_t verify = 0x00;
    readFromlis3dsh(MEMS_SENSOR_WHO_AM_I_ADDR, &verify, sizeof(verify));
    if(verify == MEMS_SENSOR_WHO_AM_I_VALUE)
    {
        return true;
    }
    return false;
}

ret_code_t noOfSamplesStoredinfifo(uint8_t* samplesCnt)
{
    ret_code_t err = NRF_SUCCESS;
    err = readFromlis3dsh(MEMS_SENSOR_FIFO_SRC_ADDR, samplesCnt, sizeof(uint8_t));
    APP_ERROR_CHECK(err);
}

ret_code_t wakeUpStateMachineConfiguration()
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t toSend[2] = {0x00};

    toSend[0] = MEMS_SENSOR_CTRL_REG1_ADDR;
    toSend[1] = 0x01;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
    toSend[1] = 0x48;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
    toSend[1] = 0x97;/* 1.6k sampling rate is selected*/
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    toSend[1] = 0x00;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = THRS1_1;
    toSend[1] = 0x65;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = ST1_1;
    toSend[1] = 0x05;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = ST1_2;
    toSend[1] = 0x11;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MASK1_B;
    toSend[1] = 0xFC;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = MASK1_A;
    toSend[1] = 0xFC;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    toSend[0] = SETT1;
    toSend[1] = 0x01;
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    /* FIFO mode selection */
    memset(toSend, 0x00, sizeof(toSend));
    toSend[0] = MEMS_SENSOR_CTRL_REG6_ADDR;
    toSend[1] |= (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT);
    err = writeTolis3dsh(toSend, sizeof(toSend));
    APP_ERROR_CHECK1(err);

    return NRF_SUCCESS;
}

int16_t two_compl_to_int16(uint16_t two_compl_value)
{
    int16_t int16_value = 0;

    /* conversion */
    if (two_compl_value > 32768) {
        int16_value = (int16_t)(-(((~two_compl_value) & (uint16_t)(0xFFFF)) + (uint16_t)(1)));
    } else {
        int16_value = (int16_t)(two_compl_value);
    }

    return int16_value;
}


ret_code_t ReadOutputRegistersOfAccelerometerNew()
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t vibData[120] = {0x00};

    err = readFromlis3dsh(MEMS_SENSOR_OUT_X_L_ADDR, &vibData[0], sizeof(vibData));
//    printf("error read Lis3 = %d\n",err);
    APP_ERROR_CHECK(err);

    for(uint16_t i = 0, j = 0; (j < SAMPLE_READ_ONE_ITERATION) && (i < (uint16_t)(SAMPLE_READ_ONE_ITERATION*6)) ; i = (uint16_t)(i+6), j++)
    {
        x_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+1]<<8) | (uint16_t)vibData[i]);
        y_axis_data[sampleCntTracker + j]= two_compl_to_int16(((uint16_t)vibData[i+3]<<8) | (uint16_t)vibData[i+2]);
        z_axis_data[sampleCntTracker + j] = two_compl_to_int16(((uint16_t)vibData[i+5]<<8) | (uint16_t)vibData[i+4]);

        x_axis_data[sampleCntTracker + j] = (int16_t)(x_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
        y_axis_data[sampleCntTracker + j] = (int16_t)(y_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
        z_axis_data[sampleCntTracker + j] = (int16_t)(z_axis_data[sampleCntTracker + j] * LIS3DSH_2G_SENSITIVITY);
    }

    sampleCntTracker = (uint16_t)(sampleCntTracker + SAMPLE_READ_ONE_ITERATION);
    return NRF_SUCCESS;
}

//uint32_t timeCapture = 0x00;
//uint32_t time_ticks = 0x00;
//const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0);

//void startTimer()
//{
//    uint32_t time_ms = 8000; //Time(in miliseconds) between consecutive compare events.
//    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
//    err_code = nrf_drv_timer_init(&TIMER_LED, &timer_cfg, NULL);
//    APP_ERROR_CHECK(err_code);
//    time_ticks = nrf_drv_timer_ms_to_ticks(&TIMER_LED, time_ms);
//
//    nrf_drv_timer_extended_compare(
//         &TIMER_LED, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);
//    nrf_drv_timer_enable(&TIMER_LED);    
//}

ret_code_t accelerometerDataAcquisition_SR_1_6_0_0(uint16_t sampleCount)
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t fifoSamples = 0x00;
    memset(x_axis_data,0,sizeof(x_axis_data));
    memset(y_axis_data,0,sizeof(y_axis_data));
    memset(z_axis_data,0,sizeof(z_axis_data));
    //startTimer();
    //nrf_delay_ms(50);
    //timeCapture = nrfx_timer_capture(&TIMER_LED, 0);
    //nrf_delay_us(ACC_DELAY_2_0);
    //nrf_delay_us(10000);
    //startTimer();

    nrf_delay_us(ACC_DELAY_2_0);
    err = noOfSamplesStoredinfifo(&fifoSamples);
    printf("error  nsamples= %d\n",fifoSamples);
    APP_ERROR_CHECK1(err);
    for(uint16_t it_cnt = 0x00; it_cnt < (sampleCount)/20; it_cnt++)
    {
        if(it_cnt)
        {
            nrf_delay_us(SEC_IT_DELAY_ODR_1_6_0_0);
        }
        err = ReadOutputRegistersOfAccelerometerNew();
//        printf("error = read %d\n",err);
        APP_ERROR_CHECK1(err);
    }
      
    return NRF_SUCCESS;
}

//void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
//{
//    APP_ERROR_CHECK(NRF_LOG_INIT(NULL));
//    NRF_LOG_DEFAULT_BACKENDS_INIT();
//    NRF_LOG_INFO("INTERRUPT OCCURED");
//    NRF_LOG_FLUSH();
//}

//ret_code_t wakeUpStateMachineInterruptConfiguration(void)
//{
//    ret_code_t err = NRF_SUCCESS;
//    nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true);
//    in_config.pull = NRF_GPIO_PIN_PULLUP;
//    err = nrf_drv_gpiote_in_init(WAKE_UP_INT_PIN, &in_config, in_pin_handler);
//    APP_ERROR_CHECK1(err);    
//    nrf_drv_gpiote_in_event_enable(WAKE_UP_INT_PIN, true);
//    return err;
//}



//void timer_initializations()
//{
//
//
//    
//}


//const nrf_drv_timer_t TIMER_LED = NRF_DRV_TIMER_INSTANCE(0);

int8_t address = 0x00;

ret_code_t configureLis3dshAccelerometer()
{
    ret_code_t err = NRF_SUCCESS;
    uint8_t reg[2] = {0x00};

    reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
    reg[1] = DATARATE_1600 | XYZ_ENABLE;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
#if 0
    reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
    reg[1] |= XYZ_ENABLE;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

#if SOFT_RESET

    reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
    reg[1] = SOFT_RESET;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

#endif
    reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
    reg[1] = 0x00;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);


    reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    reg[1] |= FILTER_BW_800;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

    reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    reg[1] |= FULLSCALE_2;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);

    reg[0] = MEMS_SENSOR_CTRL_REG5_ADDR;
    reg[1] |= (SERIALINTERFACE_4WIRE);
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
#endif
    reg[0] = MEMS_SENSOR_CTRL_REG6_ADDR;
    reg[1] = (FIFO_ENABLE | AUTO_ADDRESS_INCREMENT);
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
    
    reg[0] = MEMS_SENSOR_FIFO_CTRL_ADDR;
    //reg[1] |= FIFO_STREAM_MODE;
    reg[1]  = 0x54;
    err = writeTolis3dsh(&reg[0], sizeof(reg));
    APP_ERROR_CHECK(err);
//    uint8_t no = 0x00;   
//    err = noOfSamplesStoredinfifo(&no);
//    APP_ERROR_CHECK(err);

}

void uart_error_handle(app_uart_evt_t * p_event)
{
    if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR)
    {
        APP_ERROR_HANDLER(p_event->data.error_communication);
    }
    else if (p_event->evt_type == APP_UART_FIFO_ERROR)
    {
        APP_ERROR_HANDLER(p_event->data.error_code);
    }
}
/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UART_BAUDRATE_115200
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_error_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */

#define UART_HWFC APP_UART_FLOW_CONTROL_ENABLED
uint8_t data1 = 0x0F;  

static void lfclk_config(void)
{
    ret_code_t err_code = nrf_drv_clock_init();
    APP_ERROR_CHECK(err_code);

    nrf_drv_clock_lfclk_request(NULL);
}




static void rtc_config(float counte_time)
{
    uint32_t err_code;
    printf("time set to = %.1f minutes",counte_time/60);

    //Initialize RTC instance
    nrf_drv_rtc_config_t config = NRF_DRV_RTC_DEFAULT_CONFIG;
    config.prescaler = 4095;
    err_code = nrf_drv_rtc_init(&rtc, &config, rtc_handler);
    APP_ERROR_CHECK(err_code);

    //Enable tick event & interrupt
    nrf_drv_rtc_tick_enable(&rtc,true);

    //Set compare channel to trigger interrupt after COMPARE_COUNTERTIME seconds
    err_code = nrf_drv_rtc_cc_set(&rtc,0,counte_time * 8,true);
    APP_ERROR_CHECK(err_code);

    //Power on RTC instance
    nrf_drv_rtc_enable(&rtc);
}


void Vibration_data_capture()
{

while ( RTC_FLAG  != false)
{
twi_init();
NRF_TWI0->TASKS_RESUME = 1; 
   ret_code_t err = NRF_SUCCESS;
 bool detected_device = verifyLis3dshAccelerometer();
            if(!detected_device)
            {
                return 0;
            }
                    uint8_t reg[2] = {0x00};
                     uint8_t temp=0x00;
                     reg[0] = MEMS_SENSOR_CTRL_REG4_ADDR;
                      reg[1] = POWER_DOWN;
                      err = writeTolis3dsh(&reg[0], sizeof(reg));
                       APP_ERROR_CHECK(err);
                     err = readFromlis3dsh(MEMS_SENSOR_CTRL_REG4_ADDR,&temp,sizeof(temp));
                      APP_ERROR_CHECK(err);
                     printf("tempvar  SR= %x\n",temp);

             err = configureLis3dshAccelerometer();
            APP_ERROR_CHECK(err);
            printf("GVR Sensor Moule Advertising.....");
             err = accelerometerDataAcquisition_SR_1_6_0_0(SAMPLE_NUMBER);
             printf("error = %d\n",err);
              APP_ERROR_CHECK(err);
                 for(int i = 0 ; i < 10 ; i++)
            {     
                  NRF_LOG_INFO("\t%d\t%d\t%d",x_axis_data[i],y_axis_data[i],z_axis_data[i]);
                  NRF_LOG_FLUSH();
    
            }
            ct = 0;
             NRF_TWI0->TASKS_SUSPEND = 1;
             
            nrf_drv_twi_disable(&m_twi);
            nrf_drv_twi_uninit(&m_twi);nrf_delay_ms(5);
            
           

            bsp_indication_set(0);
            RTC_FLAG = false;
   }

}

int main(void)
{
    bool erase_bonds;
//    uart_init()
    ret_code_t err = NRF_SUCCESS;
    uint8_t verify = 0x00;
    uint16_t length = 0x00;
     // Initialize.
     log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);
    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();
//    peer_manager_init();
    NRF_LOG_INFO("\tSensor Module acquisition started.,\n");
    
//     lfclk_config();

    rtc_config(1*60);
   
    char Buffer[50];

    
    
 bsp_indication_set(9);
   
    APP_TIMER_TICKS(2000); 
    //printf("Sensor Module acquisition started.");
    #if 0
    readFromlis3dsh(MEMS_SENSOR_TEMP_T_ADDR, &verify, sizeof(verify));
    uint8_t data = two_compl_to_int16(verify);
    #endif
   
    APP_ERROR_CHECK(err);
    //NRF_LOG_INFO("Temparature : %d\n",data);
    NRF_LOG_INFO("\tX\tY\tZ");
     


    int temp1,temp2;
    bsp_indication_set(0);
    // Start execution.
    
    //advertising_start(erase_bonds);
    int temp;
   

    // Enter main loop.   Raw Data
    for (;;)
    {
     
       
       idle_state_handle();
       if(RTC_FLAG == true)
       {
            Vibration_data_capture();
       }


    }
   
}





//            uint8_t reg[2] = {0x00};
//                     uint8_t temp=0x00;
//                     reg[0] = MEMS_SENSOR_CTRL_REG3_ADDR;
//                      reg[1] = 0x01;
//                      err = writeTolis3dsh(&reg[0], sizeof(reg));
//                       APP_ERROR_CHECK(err);
//                     err = readFromlis3dsh(MEMS_SENSOR_CTRL_REG3_ADDR,&temp,sizeof(temp));
//                      APP_ERROR_CHECK(err);
//                     printf("tempvar  SR= %x\n",temp);

please help ASAP.

Thank You

Parents Reply Children
No Data
Related