This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Issue including hardware peripherals to a project with softdevice loaded. TWI master communication issue.

Hello,

I have program w/o using softdevice to drive an LED driver using I2C. I was able to get this to work very well with out a softdevice, however once I loaded a soft device, the program gets stuck in a while loop.

In order to get out of the while loop a handler is used when a xfer is complete to flip a flag. I have my code attached, any help or direction would be greatly appreciated. 

#include "TLC59116.h"
#include "I2C wrapper.h"



void	drv_TLC59116_init(void){
	/*	Initialize i2c bus																					*/

		nrf_gpio_range_cfg_output(22, 23);

		nrf_gpio_pin_write(22, 1);

		nrf_gpio_pin_write(23, 1);
	
	
	/*	Initialize mode regiters																		*/
		twi_sendCommand(IC_RED_ARRAY, REG_MODE1, 0x00, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_MODE2, MODE2_BLNK, 2);

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_MODE1, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_MODE2, MODE2_BLNK, 2);	
	
	/*	Initialize LED brightness such that brightness is off				*/
	
	
	
	/*	Initialize registers such that individual brightness and 
			group dimming/blinking can be controlled through its PWMx
			register and the GRPPWM registers.													*/
	
		
	
};


bool	drv_TLC59116_set_LED(uint8_t color, uint8_t LEDnumber , uint8_t brightness){

	twi_sendCommand(color, LEDnumber, brightness, 1);
	
	return true;
};

bool	drv_TLC59116_group_dim(uint8_t color, uint8_t brightness){

	twi_sendCommand(color, REG_GRPFREQ, brightness, 1);	
	
	return true;
};

bool 	drv_TLC59116_set_group_freq(uint8_t color, uint8_t freq){
	
	twi_sendCommand(color, REG_GRPFREQ, freq, 1);
	
	return true;
};

int		drv_TLC59116_get_LED_brightness(uint8_t color, uint8_t LED){
	
	//DO SOMETHING - I'M GIVING UP ON YOU
	
	return 0;
};

bool	drv_TLC59116_red_flash_rapid(void){

	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_HALF, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, RED_IREF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2);

		twi_sendCommand(IC_RED_ARRAY, REG_GRPPPWM, 0xA0,2);
		return true;

};

bool			drv_TLC59116_red_solid(void){
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_MAX, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_MAX, 2);
		
//		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM12, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, RED_IREF, 2);
		
		return true;

};

bool			drv_TLC59116_red_off(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2);
	
		return true;

};

bool			drv_TLC59116_blue_solid(void){

	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM0, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM1, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM6, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM7, PWM_MAX, 2);		

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM8, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM9, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM10, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM11, PWM_MAX, 2);
		
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_IREF_RW, BLUE_IREF, 2);
		
		return true;

};

bool			drv_TLC59116_blue_off(void){
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return true;

};

bool			drv_TLC59116_red_sides_flash(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0xD5, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x57, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x7D, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_MAX, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_MAX, 2);

		return true;
};

bool 			drv_TLC59116_red_sides_off(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x15, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x54, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x42, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2);
	
		return true;
		

};

bool			drv_TLC59116_red_Q_on(void){
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x01, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM12, PWM_MAX, 2);

		return true;
};

bool			drv_TLC59116_red_Q_off(void){
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x00, 2);

		return true;

};

bool			drv_TLC59116_blue_Q_on(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x01, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM12, PWM_MAX, 2);
	
		return true;
};

bool			drv_TLC59116_blue_Q_off(void){
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return true;

};

bool			drv_TLC59116_green_Q_on(void){
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x04, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM13, PWM_MAX, 2);
	
		return true;

};

bool			drv_TLC59116_green_Q_off(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return true;
	
};

bool			drv_TLC59116_yellow_Q_on(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x50, 2);
	
		return true;
	
};
bool			drv_TLC59116_yellow_Q_off(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
		
		return true;
	
};

bool			drv_TLC59116_off(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return false;

};

uint16_t	drv_TLC59116_get_errors(void){
	
/****************************************************************
* read EFLAG1; read EFLAG2; OR result; return result
*****************************************************************/
	
	
	
	return 0;
}; 

bool			drv_TLC59116_red_dim(void) {

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_HALF, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);
		
		
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, DIM_IREF, 2);
		
		return true;


}

bool			drv_TLC59116_blue_dim(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM0, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM1, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM6, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM7, PWM_HALF, 2);		

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM9, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM11, PWM_HALF, 2);
		
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_IREF_RW, DIM_IREF, 2);
		
		return true;



}

bool			drv_TLC59116_red_Q_dim(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x01, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM12, PWM_HALF, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, DIM_IREF, 2);
	
		return true;

}

bool			drv_TLC59116_blue_cal_flash(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0xF0, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x0f, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2);	
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2);		
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2);
	
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_GRPPPWM, 0xA0,2);
	
		return true;

}

bool			drv_TLC59116_red_cal_flash(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0xFF, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);	
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);		
	
		twi_sendCommand(IC_RED_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_GRPPPWM, 0xA0,2);
	
		return true;

}

bool			drv_TLC59116_blue_cal_solid(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x50, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x05, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2);	
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2);		
	
		return true; 

}

bool			drv_TLC59116_red_cal_solid(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x55, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);	
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);		
	
		return true;

}



#include "I2C wrapper.h"
#include "SEGGER_RTT.h"

extern const nrf_drv_twi_t I2C_twi_master;

/* Indicates if operation on TWI has ended. */
extern volatile bool mTWI_xfer_done;
//extern volatile bool //mTWI_xfer_error;

bool I2Cbus_init(void) {
    bool bus_clear = false;

    // data line
    if (nrf_gpio_pin_read(nRF_PERIPH_MASTER_I2C_SDA) == 1) {
        bus_clear = true;
        //SEGGER_RTT_printf(0, "I2C Bus clear\r\n");
    }

    // clock line
    if (nrf_gpio_pin_read(nRF_PERIPH_MASTER_I2C_SCL) == 1) {
        bus_clear = true;
        //SEGGER_RTT_printf(0, "I2C Bus clear\r\n");
    }

    //twi_clear_bus(&I2C_twi_master, 0);

    return bus_clear;
}


bool twi_sendCommand(uint8_t ptrDevice,  uint8_t registerAddr,  uint8_t registerVal, uint8_t numBytes) {
    //
    uint32_t volatile err_code;
    uint32_t debug_code;
    uint8_t index = 0;
    bool nostop = false;

    mTWI_xfer_done = false;
    //mTWI_xfer_error = false;

    uint8_t m_txbuf[2] = { 0x00, 0x00 };                  //, 0x00
/*
    if ((numBytes > 1) && (ptrDevice != 0x40)) {
        nostop = true;
    } else {
        nostop = false;
    }
*/
    m_txbuf[index++] = registerAddr;

    if (registerVal != NULL) {
        m_txbuf[index++] = registerVal;
    }

    if (numBytes < 255) {
        //uint8_t address, const uint8_t *p_data, uint8_t length, bool no_stop
        err_code = nrf_drv_twi_tx(&I2C_twi_master, ptrDevice, m_txbuf, sizeof(m_txbuf), nostop);
        if (err_code != NRF_SUCCESS) {
            debug_code = 0;
            debug_code = 0;
            debug_code = 0;
            return false;
        }
    }

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;

  /*
    while (mTWI_xfer_done == false) {
        //if any I2C bus error detected then we will terminate waiting
        if (mTWI_xfer_error == true) {
            debug_code = 0;
            debug_code = 0;
            break;
        }
    }
  */
		while (mTWI_xfer_done == false) {
				
		}


    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    return true;
}

bool twi_readDevice(uint8_t ptrDevice, uint8_t *buffer, uint8_t numBytes, bool continuous) {
    //
    uint32_t volatile err_code;
    uint32_t debug_code;
    uint32_t volatile recvdByteCnt;

    //mTWI_xfer_done = false;
    //mTWI_xfer_error = false;

    if (numBytes < 255) {
        err_code = nrf_drv_twi_rx(&I2C_twi_master, ptrDevice, buffer, numBytes);                            // 
        APP_ERROR_CHECK(err_code);
    }

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;

		/*
    while (mTWI_xfer_done == false) {
        debug_code = 0;
        debug_code = 0;
        debug_code = 0;
        //if any I2C bus error detected then we will terminate waiting
        if (mTWI_xfer_error == true) {
            debug_code = 0;
            debug_code = 0;
            debug_code = 0;
            break;
        }
    }
		*/

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    return true;
}

uint8_t* twi_readContinous(uint8_t ptrDevice, const uint8_t *registerAddr, uint8_t *buffer, uint8_t TXnumBytes, uint8_t RXnumBytes) {
    //
    uint8_t m_txbuf[3] = { 0x00, 0x00, 0x00 };                  //
    uint8_t index = 0;
    //
    uint32_t volatile err_code;
    uint32_t debug_code;
    uint32_t volatile recvdByteCnt;

    //mTWI_xfer_error = false;

    static uint8_t rxBuffer[32];

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    memset(&rxBuffer, 0, sizeof(rxBuffer));

    m_txbuf[index++] = *registerAddr;

    if (TXnumBytes < 255) {
        //
        err_code = 0;
        err_code = 0;
        err_code = 0;
        //mTWI_xfer_done = false;
        //uint8_t address, const uint8_t *p_data, uint8_t length, bool no_stop
        err_code = nrf_drv_twi_tx(&I2C_twi_master, ptrDevice, m_txbuf, TXnumBytes, true);

        debug_code = 0;
        debug_code = 0;
        debug_code = 0;

			/*
        while (mTWI_xfer_done == false) {
            //if any I2C bus error detected then we will terminate waiting
            if (mTWI_xfer_error == true) {
                debug_code = 0;
                debug_code = 0;
                break;
            }
        }
			*/

        //if (1) {         //ptrDevice == 0x40
        nrf_delay_us(40);
        //}

        err_code = 0;
        err_code = 0;
        err_code = 0;
        //mTWI_xfer_done = false;
        //uint8_t address, uint8_t *p_data, uint8_t length
        err_code = nrf_drv_twi_rx(&I2C_twi_master, ptrDevice, rxBuffer, RXnumBytes);

        debug_code = 0;
        debug_code = 0;
        debug_code = 0;

				/*
        while (mTWI_xfer_done == false) {
            //if any I2C bus error detected then we will terminate waiting
            if (mTWI_xfer_error == true) {
                debug_code = 0;
                debug_code = 0;
                break;
            }
        }
				*/
    }

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    return rxBuffer;
}
/**
 * Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */


/******************************************
 *------ MEMORY MAPP Address ------
 *
 * 0x0000-0x00001000	(MBR end address)
 *
 *
 * 0x00022FFF	(softdevice V5.0.2 end address)
 *
 *
 * 0x00023000	(app device start address)
 *
 *
 * 0x00072000 (bootloader start address)
 *
 *
 * 0x0007E000 (MBR params address)
 *
 *
 * 0x0007F000 (bootloader settings address)
 *
 *
 * 0x00080000 (512MB Memory total size)
 *****************************************/
#include "main.h"
 
 
 
#include <stdint.h>
#include <string.h>
#include "nordic_common.h" 
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"

#include "nrf_drv_spi.h"
#include "nrf_drv_twi.h"
#include "nrf_drv_timer.h"

#include "nrf_gpiote.h"
#include "nrf_gpio.h"
#include "nrf_drv_gpiote.h"

#include "ADS1018.h"
#include "TLC59116.h"

/*ST - COOK_CNTRL files*/
#include "cook_ctrl.h"

#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"

#define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */

#define APP_FEATURE_NOT_SUPPORTED       BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2        /**< Reply when unsupported features are requested. */

#define DEVICE_NAME                     "DYNA Q"				                            /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
#define APP_ADV_TIMEOUT_IN_SECONDS      180                                         /**< The advertising timeout (in units of seconds). */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */

#define DYNAQ																																				/** DYNA Q BOARD. */

BLE_NUS_DEF(m_nus);                                                                 /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};


/*---------------Variables used in Cook_Ctrl.c----------------*/
volatile uint16_t LastFanOnTime = 1 ;
volatile uint16_t FanOnTime = 4000 ;
volatile bool			Fan_State_Change = 0;

extern uint8_t 							prop_band;
extern uint16_t							PropBand_X;
extern uint16_t							CycleTimer_X;
extern uint16_t 						PitTemp;		
extern uint16_t  						Food1Temp;
extern uint16_t							Food1Set;
extern bool  								FAN_STATUS;	
extern bool 								OPEN_LID_STATUS;
extern bool 								OPEN_LID_DETECT_CONFIG;
extern uint16_t 						PitSet;
extern uint16_t 						RateChangeTimer; //triggers CheckRateChange() every 5 minutes
extern uint16_t							Alarm_Dev;
extern int8_t 							AUTO_OFFSET;

/*----------------------------SPI variables------------------------------------------*/
extern volatile bool 				spi_xfer_done;
extern const nrf_drv_spi_t	SPI_master; 
bool 												data_ready;

/*---------------- Indicates if operation on TWI has ended. --------------------------*/
volatile bool mTWI_xfer_done = false;

/*-----------------------------LED variables-------------------------------------------------*/
bool 												blue_solid = false;


#define TWI_INSTANCE_ID     1 /* TWI instance ID. */
/* TWI instance. */
const nrf_drv_twi_t I2C_twi_master = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);


/*-----------Temperature Sample Timer/ RateChangeTimer decrement Timer 2-------------------*/
const nrf_drv_timer_t TEMPERATURE_TIMER = NRF_DRV_TIMER_INSTANCE(2);

/*----------------------------Fan ON/OFF Timer Timer 3-------------------------------------*/
const nrf_drv_timer_t FAN_UPDATE = NRF_DRV_TIMER_INSTANCE(3);

/*-------------------------Boot Flag-------------------------*/
volatile bool Boot_Flag = 1;
#ifdef DYNAQ
volatile uint8_t	Boot_Timer = 14; //7 seconds
#endif

/*---------------Variables used in sample temp----------------*/ //maybe rename??
volatile bool		 		sample_temp;
volatile bool 			Fan_State_Update;




void update_fan_status(bool FanState)
{
    FAN_STATUS = FanState ;
		Fan_State_Change = 1 ;
}	


void set_sample_temp(bool Set_Sample)
{
	sample_temp = Set_Sample; // sets flag = 1 reset after temperatures are measured
	
	Fan_State_Update = Set_Sample; // sets flag = 1 reset after Control Fan is run which is triggerd by this flag in cpombination with the fan state change flag
}


//MTH TIMER 2 Handler temperature_timer
void temperature_timer_event_handler(nrf_timer_event_t event_type, void* p_context)
{
		switch (event_type)
		{
				case NRF_TIMER_EVENT_COMPARE0:
				
						if (Boot_Flag == 1)
						{
								if (Boot_Timer != 0)
								{
										Boot_Timer--;
								}
								else if (Boot_Timer == 0)
								{
										Boot_Flag = 0;
								}
						}
						RateChangeTimer--;

						set_sample_temp(1);
				
						break;
				default:
						//Do nothing.
						break;
		}
}


//ST TIMER 3 Handler FAN_timer
void fan_update_event_handler(nrf_timer_event_t event_type, void* p_context)
{
     switch (event_type)
    {
            
			case NRF_TIMER_EVENT_COMPARE1:
				if(FAN_STATUS == 0)
				{
					update_fan_status(1);
				}
				else
				{
					update_fan_status(0);
				}
			break;
			
      case NRF_TIMER_EVENT_COMPARE0:
				update_fan_status(0);				
      break;    
						
        default:
            //Do nothing.
            break;
    }
}


/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**
* @brief SPI user event handler.
* @param event
*/
void spi_event_handler(nrf_drv_spi_evt_t const * p_event,
                       void *                    p_context)
{
		spi_xfer_done = true;

}

/**
 * @brief TWI events handler.
 */
void twi_handler(nrf_drv_twi_evt_t const * p_event, void * p_context)
{
    switch (p_event->type)
    {
        case NRF_DRV_TWI_EVT_DONE:
            if (p_event->xfer_desc.type == NRF_DRV_TWI_XFER_RX)
            {
                //data_handler(m_sample);
            }
            mTWI_xfer_done = true;
            break;
				case NRF_DRV_TWI_EVT_ADDRESS_NACK:
						break;
				case NRF_DRV_TWI_EVT_DATA_NACK:
						break;
        default:
            break;
    }
}

/**
* @brief SPI event setup.
* @param none
*/

static void spi_event_setup (void){
	
		nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG;
    spi_config.ss_pin   = ADS1018_SPI_SS_1; 	//Dyna Q
    spi_config.miso_pin = ADS1018_SPI_MISO;
    spi_config.mosi_pin = ADS1018_SPI_MOSI;
    spi_config.sck_pin  = ADS1018_SPI_SCK;
		spi_config.frequency = NRF_DRV_SPI_FREQ_250K;
    APP_ERROR_CHECK(nrf_drv_spi_init(&SPI_master, &spi_config, spi_event_handler, NULL));
}

/*****************ST - HANDLER FOR MISO CONVERSION READY********************/
void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action){
   
		data_ready = true; 
}

/**********************ST - ENABLES MISO DATA READY CHECK*******************/
static void gpio_init(void){

	ret_code_t err_code; 
	
//	err_code = nrf_drv_gpiote_init();
//	APP_ERROR_CHECK(err_code);

  nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
	in_config.pull = NRF_GPIO_PIN_PULLUP;

  err_code = nrf_drv_gpiote_in_init(ADS1018_SPI_MISO, &in_config, in_pin_handler);
	APP_ERROR_CHECK(err_code);
    

  nrf_drv_gpiote_in_event_enable(ADS1018_SPI_MISO, true);
}


void twi_init (void)
{
    ret_code_t err_code;

    const nrf_drv_twi_config_t twi_lm75b_config = {
       .frequency          = NRF_TWI_FREQ_100K,
       .scl                = LED_DRV_I2C_SCL,
       .sda                = LED_DRV_I2C_SDA,
       .interrupt_priority = APP_IRQ_PRIORITY_HIGHEST,
       .clear_bus_init     = false,
       .hold_bus_uninit  = false
    };

    err_code = nrf_drv_twi_init(&I2C_twi_master, &twi_lm75b_config, twi_handler, NULL);
    APP_ERROR_CHECK(err_code);

    NRF_GPIO->PIN_CNF[LED_DRV_I2C_SCL] = 
        (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
      | (GPIO_PIN_CNF_DRIVE_S0D1     << GPIO_PIN_CNF_DRIVE_Pos)
      | (GPIO_PIN_CNF_PULL_Disabled  << GPIO_PIN_CNF_PULL_Pos)                                        //Clock Pullup/Disabled
      | (GPIO_PIN_CNF_INPUT_Connect  << GPIO_PIN_CNF_INPUT_Pos)
      | (GPIO_PIN_CNF_DIR_Input      << GPIO_PIN_CNF_DIR_Pos);

    NRF_GPIO->PIN_CNF[LED_DRV_I2C_SDA] =
        (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
      | (GPIO_PIN_CNF_DRIVE_S0D1     << GPIO_PIN_CNF_DRIVE_Pos)
      | (GPIO_PIN_CNF_PULL_Disabled  << GPIO_PIN_CNF_PULL_Pos)                                        //Data Pullup/Disabled
      | (GPIO_PIN_CNF_INPUT_Connect  << GPIO_PIN_CNF_INPUT_Pos)
      | (GPIO_PIN_CNF_DIR_Input      << GPIO_PIN_CNF_DIR_Pos);

    nrf_drv_twi_enable(&I2C_twi_master);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_nus    Nordic UART Service structure.
 * @param[in] p_data   Data to be send to UART module.
 * @param[in] length   Length of the data.
 */
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_evt_t * p_evt)
{

    if (p_evt->type == BLE_NUS_EVT_RX_DATA)
    {
        uint32_t err_code;

        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
        {
            do
            {
                err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
            } while (err_code == NRF_ERROR_BUSY);
        }
        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length-1] == '\r')
        {
            while (app_uart_put('\n') == NRF_ERROR_BUSY);
        }
    }

}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t       err_code;
    ble_nus_init_t nus_init;

    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

#ifndef S140
        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;
#endif

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
            err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);
            break;
#if !defined (S112)
         case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
        {
            ble_gap_data_length_params_t dl_params;

            // Clearing the struct will effectivly set members to @ref BLE_GAP_DATA_LENGTH_AUTO
            memset(&dl_params, 0, sizeof(ble_gap_data_length_params_t));
            err_code = sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, &dl_params, NULL);
            APP_ERROR_CHECK(err_code);
        } break;
#endif //!defined (S112)
        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_EVT_USER_MEM_REQUEST:
            err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
        {
            ble_gatts_evt_rw_authorize_request_t  req;
            ble_gatts_rw_authorize_reply_params_t auth_reply;

            req = p_ble_evt->evt.gatts_evt.params.authorize_request;

            if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID)
            {
                if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ)     ||
                    (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) ||
                    (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL))
                {
                    if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
                    {
                        auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
                    }
                    else
                    {
                        auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ;
                    }
                    auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED;
                    err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle,
                                                               &auth_reply);
                    APP_ERROR_CHECK(err_code);
                }
            }
        } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, 64);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;

            if ((data_array[index - 1] == '\n') || (index >= (m_ble_nus_max_data_len)))
            {
                NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                do
                {
                    uint16_t length = (uint16_t)index;
                    err_code = ble_nus_string_send(&m_nus, data_array, &length);
                    if ( (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) )
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);

                index = 0;
            }
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
}
/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
        .baud_rate    = NRF_UART_BAUDRATE_115200
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_TIMEOUT_IN_SECONDS;					/// 3 seconds timeout = APP_ADV_TIMEOUT_IN_SECONDS

    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for placing the application in low power state while waiting for events.
 */
static void power_manage(void)
{
    uint32_t err_code = sd_app_evt_wait();
    APP_ERROR_CHECK(err_code);
}


/**@brief Application main function.
 */
int main(void)
{
    uint32_t err_code;
    bool     erase_bonds;
		
		//Timer 2 variables
		uint32_t time_ticks_3;
		uint32_t time_ms_temp_sample = 500; //take a temperature measurement every 500ms

		//Timer 3 variables -- 8 second timer for AUTO_OFFSET
		uint32_t time_ms = FanOnTime; 
		uint32_t time_ms_2 = CycleTimer_X;
    uint32_t time_ticks;
		uint32_t time_ticks_2;		
	
	
    // Initialize.
    err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);

    uart_init();
    log_init();

    buttons_leds_init(&erase_bonds);



		
    //MTH - Configure Timer 2 used for controlling when temperature is sampled and when the auto offset is applied
    nrf_drv_timer_config_t timer_cfg_2 = NRF_DRV_TIMER_DEFAULT_CONFIG;
    err_code = nrf_drv_timer_init(&TEMPERATURE_TIMER, &timer_cfg_2, temperature_timer_event_handler);
    APP_ERROR_CHECK(err_code);
		
    time_ticks_3 = nrf_drv_timer_ms_to_ticks(&TEMPERATURE_TIMER, time_ms_temp_sample);
                    
		nrf_drv_timer_extended_compare(&TEMPERATURE_TIMER, NRF_TIMER_CC_CHANNEL0, time_ticks_3, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);

    nrf_drv_timer_enable(&TEMPERATURE_TIMER);



		//Configure FAN_UPDATE for generating simple light effect - leds on board will invert his state one after the other.
    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    err_code = nrf_drv_timer_init(&FAN_UPDATE, &timer_cfg, fan_update_event_handler);
    APP_ERROR_CHECK(err_code);
		
    time_ticks = nrf_drv_timer_ms_to_ticks(&FAN_UPDATE, time_ms);
		time_ticks_2 = nrf_drv_timer_ms_to_ticks(&FAN_UPDATE, time_ms_2);
		
    nrf_drv_timer_compare(&FAN_UPDATE, NRF_TIMER_CC_CHANNEL0, time_ticks, true);
                           
		nrf_drv_timer_extended_compare(
    &FAN_UPDATE, NRF_TIMER_CC_CHANNEL1, time_ticks_2, NRF_TIMER_SHORT_COMPARE1_CLEAR_MASK, true);

    nrf_drv_timer_enable(&FAN_UPDATE);
		
		APP_ERROR_CHECK(NRF_LOG_INIT(NULL));
		
		/********************** ST - SPI CONFIGURATION SETUP ***************************************/

		gpio_init();															//Enable MISO data_ready flag; uses in_pin _handler
		spi_event_setup ();												//Setup spi pins, frequency and mode

		init_ADS1018_ADC();												//Initialize ADS1018 chip - ST
		
		/********************** ST - I2C CONFIGURATION SETUP ***************************************/
//		twi_init();																//Setup i2c pins
//		drv_TLC59116_init();											//Initialize TLC59116 chip											 
			
		//ble 
		ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();

    printf("\r\nUART Start!\r\n");
    NRF_LOG_INFO("UART Start!");
    err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
		// ble end
		


    // Enter main loop.
    while (1) {
				//ble
        UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
        power_manage();
				//ble end
				
    }
}


/**
 * @}
 */

Parents Reply
  • Hi,

    I was able to get this to work very well with out a softdevice, however once I loaded a soft device, the program gets stuck in a while loop.

     Is the while loop in your code, or is it inside the Softdevice? Also, are you able to check if you receive any NRF_DRV_TWI_EVT_ADDRESS_NACK or NRF_DRV_TWI_EVT_DATA_NACK in your callback?

    Thanks,

    Vidar

    edit: I would also have considered changing the interrupt priority of TWI to APP_IRQ_PRIORITY_LOWEST to be aligned with the other SDK modules. 

Children
Related