Hello,
I have program w/o using softdevice to drive an LED driver using I2C. I was able to get this to work very well with out a softdevice, however once I loaded a soft device, the program gets stuck in a while loop.
In order to get out of the while loop a handler is used when a xfer is complete to flip a flag. I have my code attached, any help or direction would be greatly appreciated.
#include "TLC59116.h" #include "I2C wrapper.h" void drv_TLC59116_init(void){ /* Initialize i2c bus */ nrf_gpio_range_cfg_output(22, 23); nrf_gpio_pin_write(22, 1); nrf_gpio_pin_write(23, 1); /* Initialize mode regiters */ twi_sendCommand(IC_RED_ARRAY, REG_MODE1, 0x00, 2); twi_sendCommand(IC_RED_ARRAY, REG_MODE2, MODE2_BLNK, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_MODE1, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_MODE2, MODE2_BLNK, 2); /* Initialize LED brightness such that brightness is off */ /* Initialize registers such that individual brightness and group dimming/blinking can be controlled through its PWMx register and the GRPPWM registers. */ }; bool drv_TLC59116_set_LED(uint8_t color, uint8_t LEDnumber , uint8_t brightness){ twi_sendCommand(color, LEDnumber, brightness, 1); return true; }; bool drv_TLC59116_group_dim(uint8_t color, uint8_t brightness){ twi_sendCommand(color, REG_GRPFREQ, brightness, 1); return true; }; bool drv_TLC59116_set_group_freq(uint8_t color, uint8_t freq){ twi_sendCommand(color, REG_GRPFREQ, freq, 1); return true; }; int drv_TLC59116_get_LED_brightness(uint8_t color, uint8_t LED){ //DO SOMETHING - I'M GIVING UP ON YOU return 0; }; bool drv_TLC59116_red_flash_rapid(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, RED_IREF, 2); twi_sendCommand(IC_RED_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2); twi_sendCommand(IC_RED_ARRAY, REG_GRPPPWM, 0xA0,2); return true; }; bool drv_TLC59116_red_solid(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_MAX, 2); // twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM12, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, RED_IREF, 2); return true; }; bool drv_TLC59116_red_off(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x00, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x00, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x00, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2); return true; }; bool drv_TLC59116_blue_solid(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM0, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM1, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM6, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM7, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM8, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM9, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM10, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM11, PWM_MAX, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_IREF_RW, BLUE_IREF, 2); return true; }; bool drv_TLC59116_blue_off(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2); return true; }; bool drv_TLC59116_red_sides_flash(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0xD5, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x57, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x7D, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_MAX, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_MAX, 2); return true; }; bool drv_TLC59116_red_sides_off(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x15, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x54, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x42, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2); return true; }; bool drv_TLC59116_red_Q_on(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x01, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM12, PWM_MAX, 2); return true; }; bool drv_TLC59116_red_Q_off(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x00, 2); return true; }; bool drv_TLC59116_blue_Q_on(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x01, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM12, PWM_MAX, 2); return true; }; bool drv_TLC59116_blue_Q_off(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2); return true; }; bool drv_TLC59116_green_Q_on(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x04, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM13, PWM_MAX, 2); return true; }; bool drv_TLC59116_green_Q_off(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2); return true; }; bool drv_TLC59116_yellow_Q_on(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x50, 2); return true; }; bool drv_TLC59116_yellow_Q_off(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2); return true; }; bool drv_TLC59116_off(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x00, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x00, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x00, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, 0x00, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2); return false; }; uint16_t drv_TLC59116_get_errors(void){ /**************************************************************** * read EFLAG1; read EFLAG2; OR result; return result *****************************************************************/ return 0; }; bool drv_TLC59116_red_dim(void) { twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, DIM_IREF, 2); return true; } bool drv_TLC59116_blue_dim(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM0, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM1, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM6, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM7, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM8, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM9, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM10, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM11, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_IREF_RW, DIM_IREF, 2); return true; } bool drv_TLC59116_red_Q_dim(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x01, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM12, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, DIM_IREF, 2); return true; } bool drv_TLC59116_blue_cal_flash(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0xF0, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x0f, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_GRPPPWM, 0xA0,2); return true; } bool drv_TLC59116_red_cal_flash(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0xFF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2); twi_sendCommand(IC_RED_ARRAY, REG_GRPPPWM, 0xA0,2); return true; } bool drv_TLC59116_blue_cal_solid(void){ twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x50, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x05, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2); twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2); return true; } bool drv_TLC59116_red_cal_solid(void){ twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x55, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2); twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2); return true; }
#include "I2C wrapper.h" #include "SEGGER_RTT.h" extern const nrf_drv_twi_t I2C_twi_master; /* Indicates if operation on TWI has ended. */ extern volatile bool mTWI_xfer_done; //extern volatile bool //mTWI_xfer_error; bool I2Cbus_init(void) { bool bus_clear = false; // data line if (nrf_gpio_pin_read(nRF_PERIPH_MASTER_I2C_SDA) == 1) { bus_clear = true; //SEGGER_RTT_printf(0, "I2C Bus clear\r\n"); } // clock line if (nrf_gpio_pin_read(nRF_PERIPH_MASTER_I2C_SCL) == 1) { bus_clear = true; //SEGGER_RTT_printf(0, "I2C Bus clear\r\n"); } //twi_clear_bus(&I2C_twi_master, 0); return bus_clear; } bool twi_sendCommand(uint8_t ptrDevice, uint8_t registerAddr, uint8_t registerVal, uint8_t numBytes) { // uint32_t volatile err_code; uint32_t debug_code; uint8_t index = 0; bool nostop = false; mTWI_xfer_done = false; //mTWI_xfer_error = false; uint8_t m_txbuf[2] = { 0x00, 0x00 }; //, 0x00 /* if ((numBytes > 1) && (ptrDevice != 0x40)) { nostop = true; } else { nostop = false; } */ m_txbuf[index++] = registerAddr; if (registerVal != NULL) { m_txbuf[index++] = registerVal; } if (numBytes < 255) { //uint8_t address, const uint8_t *p_data, uint8_t length, bool no_stop err_code = nrf_drv_twi_tx(&I2C_twi_master, ptrDevice, m_txbuf, sizeof(m_txbuf), nostop); if (err_code != NRF_SUCCESS) { debug_code = 0; debug_code = 0; debug_code = 0; return false; } } debug_code = 0; debug_code = 0; debug_code = 0; /* while (mTWI_xfer_done == false) { //if any I2C bus error detected then we will terminate waiting if (mTWI_xfer_error == true) { debug_code = 0; debug_code = 0; break; } } */ while (mTWI_xfer_done == false) { } debug_code = 0; debug_code = 0; debug_code = 0; return true; } bool twi_readDevice(uint8_t ptrDevice, uint8_t *buffer, uint8_t numBytes, bool continuous) { // uint32_t volatile err_code; uint32_t debug_code; uint32_t volatile recvdByteCnt; //mTWI_xfer_done = false; //mTWI_xfer_error = false; if (numBytes < 255) { err_code = nrf_drv_twi_rx(&I2C_twi_master, ptrDevice, buffer, numBytes); // APP_ERROR_CHECK(err_code); } debug_code = 0; debug_code = 0; debug_code = 0; /* while (mTWI_xfer_done == false) { debug_code = 0; debug_code = 0; debug_code = 0; //if any I2C bus error detected then we will terminate waiting if (mTWI_xfer_error == true) { debug_code = 0; debug_code = 0; debug_code = 0; break; } } */ debug_code = 0; debug_code = 0; debug_code = 0; return true; } uint8_t* twi_readContinous(uint8_t ptrDevice, const uint8_t *registerAddr, uint8_t *buffer, uint8_t TXnumBytes, uint8_t RXnumBytes) { // uint8_t m_txbuf[3] = { 0x00, 0x00, 0x00 }; // uint8_t index = 0; // uint32_t volatile err_code; uint32_t debug_code; uint32_t volatile recvdByteCnt; //mTWI_xfer_error = false; static uint8_t rxBuffer[32]; debug_code = 0; debug_code = 0; debug_code = 0; memset(&rxBuffer, 0, sizeof(rxBuffer)); m_txbuf[index++] = *registerAddr; if (TXnumBytes < 255) { // err_code = 0; err_code = 0; err_code = 0; //mTWI_xfer_done = false; //uint8_t address, const uint8_t *p_data, uint8_t length, bool no_stop err_code = nrf_drv_twi_tx(&I2C_twi_master, ptrDevice, m_txbuf, TXnumBytes, true); debug_code = 0; debug_code = 0; debug_code = 0; /* while (mTWI_xfer_done == false) { //if any I2C bus error detected then we will terminate waiting if (mTWI_xfer_error == true) { debug_code = 0; debug_code = 0; break; } } */ //if (1) { //ptrDevice == 0x40 nrf_delay_us(40); //} err_code = 0; err_code = 0; err_code = 0; //mTWI_xfer_done = false; //uint8_t address, uint8_t *p_data, uint8_t length err_code = nrf_drv_twi_rx(&I2C_twi_master, ptrDevice, rxBuffer, RXnumBytes); debug_code = 0; debug_code = 0; debug_code = 0; /* while (mTWI_xfer_done == false) { //if any I2C bus error detected then we will terminate waiting if (mTWI_xfer_error == true) { debug_code = 0; debug_code = 0; break; } } */ } debug_code = 0; debug_code = 0; debug_code = 0; return rxBuffer; }
/** * Copyright (c) 2014 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ /****************************************** *------ MEMORY MAPP Address ------ * * 0x0000-0x00001000 (MBR end address) * * * 0x00022FFF (softdevice V5.0.2 end address) * * * 0x00023000 (app device start address) * * * 0x00072000 (bootloader start address) * * * 0x0007E000 (MBR params address) * * * 0x0007F000 (bootloader settings address) * * * 0x00080000 (512MB Memory total size) *****************************************/ #include "main.h" #include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "app_timer.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_drv_spi.h" #include "nrf_drv_twi.h" #include "nrf_drv_timer.h" #include "nrf_gpiote.h" #include "nrf_gpio.h" #include "nrf_drv_gpiote.h" #include "ADS1018.h" #include "TLC59116.h" /*ST - COOK_CNTRL files*/ #include "cook_ctrl.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define APP_FEATURE_NOT_SUPPORTED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2 /**< Reply when unsupported features are requested. */ #define DEVICE_NAME "DYNA Q" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_TIMEOUT_IN_SECONDS 180 /**< The advertising timeout (in units of seconds). */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define DYNAQ /** DYNA Q BOARD. */ BLE_NUS_DEF(m_nus); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; /*---------------Variables used in Cook_Ctrl.c----------------*/ volatile uint16_t LastFanOnTime = 1 ; volatile uint16_t FanOnTime = 4000 ; volatile bool Fan_State_Change = 0; extern uint8_t prop_band; extern uint16_t PropBand_X; extern uint16_t CycleTimer_X; extern uint16_t PitTemp; extern uint16_t Food1Temp; extern uint16_t Food1Set; extern bool FAN_STATUS; extern bool OPEN_LID_STATUS; extern bool OPEN_LID_DETECT_CONFIG; extern uint16_t PitSet; extern uint16_t RateChangeTimer; //triggers CheckRateChange() every 5 minutes extern uint16_t Alarm_Dev; extern int8_t AUTO_OFFSET; /*----------------------------SPI variables------------------------------------------*/ extern volatile bool spi_xfer_done; extern const nrf_drv_spi_t SPI_master; bool data_ready; /*---------------- Indicates if operation on TWI has ended. --------------------------*/ volatile bool mTWI_xfer_done = false; /*-----------------------------LED variables-------------------------------------------------*/ bool blue_solid = false; #define TWI_INSTANCE_ID 1 /* TWI instance ID. */ /* TWI instance. */ const nrf_drv_twi_t I2C_twi_master = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID); /*-----------Temperature Sample Timer/ RateChangeTimer decrement Timer 2-------------------*/ const nrf_drv_timer_t TEMPERATURE_TIMER = NRF_DRV_TIMER_INSTANCE(2); /*----------------------------Fan ON/OFF Timer Timer 3-------------------------------------*/ const nrf_drv_timer_t FAN_UPDATE = NRF_DRV_TIMER_INSTANCE(3); /*-------------------------Boot Flag-------------------------*/ volatile bool Boot_Flag = 1; #ifdef DYNAQ volatile uint8_t Boot_Timer = 14; //7 seconds #endif /*---------------Variables used in sample temp----------------*/ //maybe rename?? volatile bool sample_temp; volatile bool Fan_State_Update; void update_fan_status(bool FanState) { FAN_STATUS = FanState ; Fan_State_Change = 1 ; } void set_sample_temp(bool Set_Sample) { sample_temp = Set_Sample; // sets flag = 1 reset after temperatures are measured Fan_State_Update = Set_Sample; // sets flag = 1 reset after Control Fan is run which is triggerd by this flag in cpombination with the fan state change flag } //MTH TIMER 2 Handler temperature_timer void temperature_timer_event_handler(nrf_timer_event_t event_type, void* p_context) { switch (event_type) { case NRF_TIMER_EVENT_COMPARE0: if (Boot_Flag == 1) { if (Boot_Timer != 0) { Boot_Timer--; } else if (Boot_Timer == 0) { Boot_Flag = 0; } } RateChangeTimer--; set_sample_temp(1); break; default: //Do nothing. break; } } //ST TIMER 3 Handler FAN_timer void fan_update_event_handler(nrf_timer_event_t event_type, void* p_context) { switch (event_type) { case NRF_TIMER_EVENT_COMPARE1: if(FAN_STATUS == 0) { update_fan_status(1); } else { update_fan_status(0); } break; case NRF_TIMER_EVENT_COMPARE0: update_fan_status(0); break; default: //Do nothing. break; } } /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /** * @brief SPI user event handler. * @param event */ void spi_event_handler(nrf_drv_spi_evt_t const * p_event, void * p_context) { spi_xfer_done = true; } /** * @brief TWI events handler. */ void twi_handler(nrf_drv_twi_evt_t const * p_event, void * p_context) { switch (p_event->type) { case NRF_DRV_TWI_EVT_DONE: if (p_event->xfer_desc.type == NRF_DRV_TWI_XFER_RX) { //data_handler(m_sample); } mTWI_xfer_done = true; break; case NRF_DRV_TWI_EVT_ADDRESS_NACK: break; case NRF_DRV_TWI_EVT_DATA_NACK: break; default: break; } } /** * @brief SPI event setup. * @param none */ static void spi_event_setup (void){ nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG; spi_config.ss_pin = ADS1018_SPI_SS_1; //Dyna Q spi_config.miso_pin = ADS1018_SPI_MISO; spi_config.mosi_pin = ADS1018_SPI_MOSI; spi_config.sck_pin = ADS1018_SPI_SCK; spi_config.frequency = NRF_DRV_SPI_FREQ_250K; APP_ERROR_CHECK(nrf_drv_spi_init(&SPI_master, &spi_config, spi_event_handler, NULL)); } /*****************ST - HANDLER FOR MISO CONVERSION READY********************/ void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action){ data_ready = true; } /**********************ST - ENABLES MISO DATA READY CHECK*******************/ static void gpio_init(void){ ret_code_t err_code; // err_code = nrf_drv_gpiote_init(); // APP_ERROR_CHECK(err_code); nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_HITOLO(true); in_config.pull = NRF_GPIO_PIN_PULLUP; err_code = nrf_drv_gpiote_in_init(ADS1018_SPI_MISO, &in_config, in_pin_handler); APP_ERROR_CHECK(err_code); nrf_drv_gpiote_in_event_enable(ADS1018_SPI_MISO, true); } void twi_init (void) { ret_code_t err_code; const nrf_drv_twi_config_t twi_lm75b_config = { .frequency = NRF_TWI_FREQ_100K, .scl = LED_DRV_I2C_SCL, .sda = LED_DRV_I2C_SDA, .interrupt_priority = APP_IRQ_PRIORITY_HIGHEST, .clear_bus_init = false, .hold_bus_uninit = false }; err_code = nrf_drv_twi_init(&I2C_twi_master, &twi_lm75b_config, twi_handler, NULL); APP_ERROR_CHECK(err_code); NRF_GPIO->PIN_CNF[LED_DRV_I2C_SCL] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0D1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) //Clock Pullup/Disabled | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); NRF_GPIO->PIN_CNF[LED_DRV_I2C_SDA] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0D1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) //Data Pullup/Disabled | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); nrf_drv_twi_enable(&I2C_twi_master); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_nus Nordic UART Service structure. * @param[in] p_data Data to be send to UART module. * @param[in] length Length of the data. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_evt_t * p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length-1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY); } } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; #ifndef S140 case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; #endif case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; #if !defined (S112) case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST: { ble_gap_data_length_params_t dl_params; // Clearing the struct will effectivly set members to @ref BLE_GAP_DATA_LENGTH_AUTO memset(&dl_params, 0, sizeof(ble_gap_data_length_params_t)); err_code = sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, &dl_params, NULL); APP_ERROR_CHECK(err_code); } break; #endif //!defined (S112) case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_EVT_USER_MEM_REQUEST: err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST: { ble_gatts_evt_rw_authorize_request_t req; ble_gatts_rw_authorize_reply_params_t auth_reply; req = p_ble_evt->evt.gatts_evt.params.authorize_request; if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID) { if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL)) { if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE) { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE; } else { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ; } auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED; err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle, &auth_reply); APP_ERROR_CHECK(err_code); } } } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, 64); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; default: break; } } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (index >= (m_ble_nus_max_data_len))) { NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_string_send(&m_nus, data_array, &length); if ( (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) ) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, .baud_rate = NRF_UART_BAUDRATE_115200 }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_TIMEOUT_IN_SECONDS; /// 3 seconds timeout = APP_ADV_TIMEOUT_IN_SECONDS init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for placing the application in low power state while waiting for events. */ static void power_manage(void) { uint32_t err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } /**@brief Application main function. */ int main(void) { uint32_t err_code; bool erase_bonds; //Timer 2 variables uint32_t time_ticks_3; uint32_t time_ms_temp_sample = 500; //take a temperature measurement every 500ms //Timer 3 variables -- 8 second timer for AUTO_OFFSET uint32_t time_ms = FanOnTime; uint32_t time_ms_2 = CycleTimer_X; uint32_t time_ticks; uint32_t time_ticks_2; // Initialize. err_code = app_timer_init(); APP_ERROR_CHECK(err_code); uart_init(); log_init(); buttons_leds_init(&erase_bonds); //MTH - Configure Timer 2 used for controlling when temperature is sampled and when the auto offset is applied nrf_drv_timer_config_t timer_cfg_2 = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_timer_init(&TEMPERATURE_TIMER, &timer_cfg_2, temperature_timer_event_handler); APP_ERROR_CHECK(err_code); time_ticks_3 = nrf_drv_timer_ms_to_ticks(&TEMPERATURE_TIMER, time_ms_temp_sample); nrf_drv_timer_extended_compare(&TEMPERATURE_TIMER, NRF_TIMER_CC_CHANNEL0, time_ticks_3, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); nrf_drv_timer_enable(&TEMPERATURE_TIMER); //Configure FAN_UPDATE for generating simple light effect - leds on board will invert his state one after the other. nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_timer_init(&FAN_UPDATE, &timer_cfg, fan_update_event_handler); APP_ERROR_CHECK(err_code); time_ticks = nrf_drv_timer_ms_to_ticks(&FAN_UPDATE, time_ms); time_ticks_2 = nrf_drv_timer_ms_to_ticks(&FAN_UPDATE, time_ms_2); nrf_drv_timer_compare(&FAN_UPDATE, NRF_TIMER_CC_CHANNEL0, time_ticks, true); nrf_drv_timer_extended_compare( &FAN_UPDATE, NRF_TIMER_CC_CHANNEL1, time_ticks_2, NRF_TIMER_SHORT_COMPARE1_CLEAR_MASK, true); nrf_drv_timer_enable(&FAN_UPDATE); APP_ERROR_CHECK(NRF_LOG_INIT(NULL)); /********************** ST - SPI CONFIGURATION SETUP ***************************************/ gpio_init(); //Enable MISO data_ready flag; uses in_pin _handler spi_event_setup (); //Setup spi pins, frequency and mode init_ADS1018_ADC(); //Initialize ADS1018 chip - ST /********************** ST - I2C CONFIGURATION SETUP ***************************************/ // twi_init(); //Setup i2c pins // drv_TLC59116_init(); //Initialize TLC59116 chip //ble ble_stack_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); printf("\r\nUART Start!\r\n"); NRF_LOG_INFO("UART Start!"); err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); // ble end // Enter main loop. while (1) { //ble UNUSED_RETURN_VALUE(NRF_LOG_PROCESS()); power_manage(); //ble end } } /** * @} */