This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Issue including hardware peripherals to a project with softdevice loaded. TWI master communication issue.

Hello,

I have program w/o using softdevice to drive an LED driver using I2C. I was able to get this to work very well with out a softdevice, however once I loaded a soft device, the program gets stuck in a while loop.

In order to get out of the while loop a handler is used when a xfer is complete to flip a flag. I have my code attached, any help or direction would be greatly appreciated. 

#include "TLC59116.h"
#include "I2C wrapper.h"



void	drv_TLC59116_init(void){
	/*	Initialize i2c bus																					*/

		nrf_gpio_range_cfg_output(22, 23);

		nrf_gpio_pin_write(22, 1);

		nrf_gpio_pin_write(23, 1);
	
	
	/*	Initialize mode regiters																		*/
		twi_sendCommand(IC_RED_ARRAY, REG_MODE1, 0x00, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_MODE2, MODE2_BLNK, 2);

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_MODE1, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_MODE2, MODE2_BLNK, 2);	
	
	/*	Initialize LED brightness such that brightness is off				*/
	
	
	
	/*	Initialize registers such that individual brightness and 
			group dimming/blinking can be controlled through its PWMx
			register and the GRPPWM registers.													*/
	
		
	
};


bool	drv_TLC59116_set_LED(uint8_t color, uint8_t LEDnumber , uint8_t brightness){

	twi_sendCommand(color, LEDnumber, brightness, 1);
	
	return true;
};

bool	drv_TLC59116_group_dim(uint8_t color, uint8_t brightness){

	twi_sendCommand(color, REG_GRPFREQ, brightness, 1);	
	
	return true;
};

bool 	drv_TLC59116_set_group_freq(uint8_t color, uint8_t freq){
	
	twi_sendCommand(color, REG_GRPFREQ, freq, 1);
	
	return true;
};

int		drv_TLC59116_get_LED_brightness(uint8_t color, uint8_t LED){
	
	//DO SOMETHING - I'M GIVING UP ON YOU
	
	return 0;
};

bool	drv_TLC59116_red_flash_rapid(void){

	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_HALF, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, RED_IREF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2);

		twi_sendCommand(IC_RED_ARRAY, REG_GRPPPWM, 0xA0,2);
		return true;

};

bool			drv_TLC59116_red_solid(void){
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_MAX, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_MAX, 2);
		
//		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM12, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, RED_IREF, 2);
		
		return true;

};

bool			drv_TLC59116_red_off(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2);
	
		return true;

};

bool			drv_TLC59116_blue_solid(void){

	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM0, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM1, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM6, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM7, PWM_MAX, 2);		

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM8, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM9, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM10, PWM_MAX, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM11, PWM_MAX, 2);
		
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_IREF_RW, BLUE_IREF, 2);
		
		return true;

};

bool			drv_TLC59116_blue_off(void){
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return true;

};

bool			drv_TLC59116_red_sides_flash(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0xD5, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x57, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x7D, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_MAX, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_MAX, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_MAX, 2);

		return true;
};

bool 			drv_TLC59116_red_sides_off(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x15, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x54, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x42, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x55, 2);
	
		return true;
		

};

bool			drv_TLC59116_red_Q_on(void){
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x01, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM12, PWM_MAX, 2);

		return true;
};

bool			drv_TLC59116_red_Q_off(void){
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x00, 2);

		return true;

};

bool			drv_TLC59116_blue_Q_on(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x01, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM12, PWM_MAX, 2);
	
		return true;
};

bool			drv_TLC59116_blue_Q_off(void){
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return true;

};

bool			drv_TLC59116_green_Q_on(void){
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x04, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM13, PWM_MAX, 2);
	
		return true;

};

bool			drv_TLC59116_green_Q_off(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return true;
	
};

bool			drv_TLC59116_yellow_Q_on(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x50, 2);
	
		return true;
	
};
bool			drv_TLC59116_yellow_Q_off(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
		
		return true;
	
};

bool			drv_TLC59116_off(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x00, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, 0x00, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, 0x00, 2);
	
		return false;

};

uint16_t	drv_TLC59116_get_errors(void){
	
/****************************************************************
* read EFLAG1; read EFLAG2; OR result; return result
*****************************************************************/
	
	
	
	return 0;
}; 

bool			drv_TLC59116_red_dim(void) {

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM0, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM1, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM3, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM5, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM6, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM7, PWM_HALF, 2);		

		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);
		
		
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, DIM_IREF, 2);
		
		return true;


}

bool			drv_TLC59116_blue_dim(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT2, LEDOUT_PWM_NO_GRPPWM, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT3, LEDOUT_PWM_NO_GRPPWM, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM0, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM1, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM6, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM7, PWM_HALF, 2);		

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM9, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM11, PWM_HALF, 2);
		
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_IREF_RW, DIM_IREF, 2);
		
		return true;



}

bool			drv_TLC59116_red_Q_dim(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT3, 0x01, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM12, PWM_HALF, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_IREF_RW, DIM_IREF, 2);
	
		return true;

}

bool			drv_TLC59116_blue_cal_flash(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0xF0, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x0f, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2);	
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2);		
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2);
	
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_GRPPPWM, 0xA0,2);
	
		return true;

}

bool			drv_TLC59116_red_cal_flash(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0xFF, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);	
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);		
	
		twi_sendCommand(IC_RED_ARRAY, REG_GRPFREQ, FLASH_RAPID, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_GRPPPWM, 0xA0,2);
	
		return true;

}

bool			drv_TLC59116_blue_cal_solid(void){

		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT0, 0x50, 2);
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_LEDOUT1, 0x05, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM2, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM3, PWM_HALF, 2);	
	
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM4, PWM_HALF, 2);
		
		twi_sendCommand(IC_BLUE_GREEN_ARRAY, REG_PWM5, PWM_HALF, 2);		
	
		return true; 

}

bool			drv_TLC59116_red_cal_solid(void){

		twi_sendCommand(IC_RED_ARRAY, REG_LEDOUT2, 0x55, 2);
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM8, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM9, PWM_HALF, 2);	
	
		twi_sendCommand(IC_RED_ARRAY, REG_PWM10, PWM_HALF, 2);
		
		twi_sendCommand(IC_RED_ARRAY, REG_PWM11, PWM_HALF, 2);		
	
		return true;

}



#include "I2C wrapper.h"
#include "SEGGER_RTT.h"

extern const nrf_drv_twi_t I2C_twi_master;

/* Indicates if operation on TWI has ended. */
extern volatile bool mTWI_xfer_done;
//extern volatile bool //mTWI_xfer_error;

bool I2Cbus_init(void) {
    bool bus_clear = false;

    // data line
    if (nrf_gpio_pin_read(nRF_PERIPH_MASTER_I2C_SDA) == 1) {
        bus_clear = true;
        //SEGGER_RTT_printf(0, "I2C Bus clear\r\n");
    }

    // clock line
    if (nrf_gpio_pin_read(nRF_PERIPH_MASTER_I2C_SCL) == 1) {
        bus_clear = true;
        //SEGGER_RTT_printf(0, "I2C Bus clear\r\n");
    }

    //twi_clear_bus(&I2C_twi_master, 0);

    return bus_clear;
}


bool twi_sendCommand(uint8_t ptrDevice,  uint8_t registerAddr,  uint8_t registerVal, uint8_t numBytes) {
    //
    uint32_t volatile err_code;
    uint32_t debug_code;
    uint8_t index = 0;
    bool nostop = false;

    mTWI_xfer_done = false;
    //mTWI_xfer_error = false;

    uint8_t m_txbuf[2] = { 0x00, 0x00 };                  //, 0x00
/*
    if ((numBytes > 1) && (ptrDevice != 0x40)) {
        nostop = true;
    } else {
        nostop = false;
    }
*/
    m_txbuf[index++] = registerAddr;

    if (registerVal != NULL) {
        m_txbuf[index++] = registerVal;
    }

    if (numBytes < 255) {
        //uint8_t address, const uint8_t *p_data, uint8_t length, bool no_stop
        err_code = nrf_drv_twi_tx(&I2C_twi_master, ptrDevice, m_txbuf, sizeof(m_txbuf), nostop);
        if (err_code != NRF_SUCCESS) {
            debug_code = 0;
            debug_code = 0;
            debug_code = 0;
            return false;
        }
    }

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;

  /*
    while (mTWI_xfer_done == false) {
        //if any I2C bus error detected then we will terminate waiting
        if (mTWI_xfer_error == true) {
            debug_code = 0;
            debug_code = 0;
            break;
        }
    }
  */
		while (mTWI_xfer_done == false) {
				
		}


    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    return true;
}

bool twi_readDevice(uint8_t ptrDevice, uint8_t *buffer, uint8_t numBytes, bool continuous) {
    //
    uint32_t volatile err_code;
    uint32_t debug_code;
    uint32_t volatile recvdByteCnt;

    //mTWI_xfer_done = false;
    //mTWI_xfer_error = false;

    if (numBytes < 255) {
        err_code = nrf_drv_twi_rx(&I2C_twi_master, ptrDevice, buffer, numBytes);                            // 
        APP_ERROR_CHECK(err_code);
    }

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;

		/*
    while (mTWI_xfer_done == false) {
        debug_code = 0;
        debug_code = 0;
        debug_code = 0;
        //if any I2C bus error detected then we will terminate waiting
        if (mTWI_xfer_error == true) {
            debug_code = 0;
            debug_code = 0;
            debug_code = 0;
            break;
        }
    }
		*/

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    return true;
}

uint8_t* twi_readContinous(uint8_t ptrDevice, const uint8_t *registerAddr, uint8_t *buffer, uint8_t TXnumBytes, uint8_t RXnumBytes) {
    //
    uint8_t m_txbuf[3] = { 0x00, 0x00, 0x00 };                  //
    uint8_t index = 0;
    //
    uint32_t volatile err_code;
    uint32_t debug_code;
    uint32_t volatile recvdByteCnt;

    //mTWI_xfer_error = false;

    static uint8_t rxBuffer[32];

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    memset(&rxBuffer, 0, sizeof(rxBuffer));

    m_txbuf[index++] = *registerAddr;

    if (TXnumBytes < 255) {
        //
        err_code = 0;
        err_code = 0;
        err_code = 0;
        //mTWI_xfer_done = false;
        //uint8_t address, const uint8_t *p_data, uint8_t length, bool no_stop
        err_code = nrf_drv_twi_tx(&I2C_twi_master, ptrDevice, m_txbuf, TXnumBytes, true);

        debug_code = 0;
        debug_code = 0;
        debug_code = 0;

			/*
        while (mTWI_xfer_done == false) {
            //if any I2C bus error detected then we will terminate waiting
            if (mTWI_xfer_error == true) {
                debug_code = 0;
                debug_code = 0;
                break;
            }
        }
			*/

        //if (1) {         //ptrDevice == 0x40
        nrf_delay_us(40);
        //}

        err_code = 0;
        err_code = 0;
        err_code = 0;
        //mTWI_xfer_done = false;
        //uint8_t address, uint8_t *p_data, uint8_t length
        err_code = nrf_drv_twi_rx(&I2C_twi_master, ptrDevice, rxBuffer, RXnumBytes);

        debug_code = 0;
        debug_code = 0;
        debug_code = 0;

				/*
        while (mTWI_xfer_done == false) {
            //if any I2C bus error detected then we will terminate waiting
            if (mTWI_xfer_error == true) {
                debug_code = 0;
                debug_code = 0;
                break;
            }
        }
				*/
    }

    debug_code = 0;
    debug_code = 0;
    debug_code = 0;
    return rxBuffer;
}
/**
 * Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */


/******************************************
 *------ MEMORY MAPP Address ------
 *
 * 0x0000-0x00001000	(MBR end address)
 *
 *
 * 0x00022FFF	(softdevice V5.0.2 end address)
 *
 *
 * 0x00023000	(app device start address)
 *
 *
 * 0x00072000 (bootloader start address)
 *
 *
 * 0x0007E000 (MBR params address)
 *
 *
 * 0x0007F000 (bootloader settings address)
 *
 *
 * 0x00080000 (512MB Memory total size)
 *****************************************/
#include "main.h"
 
 
 
#include <stdint.h>
#include <string.h>
#include "nordic_common.h" 
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"

#include "nrf_drv_spi.h"
#include "nrf_drv_twi.h"
#include "nrf_drv_timer.h"

#include "nrf_gpiote.h"
#include "nrf_gpio.h"
#include "nrf_drv_gpiote.h"

#include "ADS1018.h"
#include "TLC59116.h"

/*ST - COOK_CNTRL files*/
#include "cook_ctrl.h"

#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"

#define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */

#define APP_FEATURE_NOT_SUPPORTED       BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2        /**< Reply when unsupported features are requested. */

#define DEVICE_NAME                     "DYNA Q"				                            /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
#define APP_ADV_TIMEOUT_IN_SECONDS      180                                         /**< The advertising timeout (in units of seconds). */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */

#define DYNAQ																																				/** DYNA Q BOARD. */

BLE_NUS_DEF(m_nus);                                                                 /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};


/*---------------Variables used in Cook_Ctrl.c----------------*/
volatile uint16_t LastFanOnTime = 1 ;
volatile uint16_t FanOnTime = 4000 ;
volatile bool			Fan_State_Change = 0;

extern uint8_t 							prop_band;
extern uint16_t							PropBand_X;
extern uint16_t							CycleTimer_X;
extern uint16_t 						PitTemp;		
extern uint16_t  						Food1Temp;
extern uint16_t							Food1Set;
extern bool  								FAN_STATUS;	
extern bool 								OPEN_LID_STATUS;
extern bool 								OPEN_LID_DETECT_CONFIG;
extern uint16_t 						PitSet;
extern uint16_t 						RateChangeTimer; //triggers CheckRateChange() every 5 minutes
extern uint16_t							Alarm_Dev;
extern int8_t 							AUTO_OFFSET;

/*----------------------------SPI variables------------------------------------------*/
extern volatile bool 				spi_xfer_done;
extern const nrf_drv_spi_t	SPI_master; 
bool 												data_ready;

/*---------------- Indicates if operation on TWI has ended. --------------------------*/
volatile bool mTWI_xfer_done = false;

/*-----------------------------LED variables-------------------------------------------------*/
bool 												blue_solid = false;


#define TWI_INSTANCE_ID     1 /* TWI instance ID. */
/* TWI instance. */
const nrf_drv_twi_t I2C_twi_master = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);


/*-----------Temperature Sample Timer/ RateChangeTimer decrement Timer 2-------------------*/
const nrf_drv_timer_t TEMPERATURE_TIMER = NRF_DRV_TIMER_INSTANCE(2);

/*----------------------------Fan ON/OFF Timer Timer 3-------------------------------------*/
const nrf_drv_timer_t FAN_UPDATE = NRF_DRV_TIMER_INSTANCE(3);

/*-------------------------Boot Flag-------------------------*/
volatile bool Boot_Flag = 1;
#ifdef DYNAQ
volatile uint8_t	Boot_Timer = 14; //7 seconds
#endif

/*---------------Variables used in sample temp----------------*/ //maybe rename??
volatile bool		 		sample_temp;
volatile bool 			Fan_State_Update;




void update_fan_status(bool FanState)
{
    FAN_STATUS = FanState ;
		Fan_State_Change = 1 ;
}	


void set_sample_temp(bool Set_Sample)
{
	sample_temp = Set_Sample; // sets flag = 1 reset after temperatures are measured
	
	Fan_State_Update = Set_Sample; // sets flag = 1 reset after Control Fan is run which is triggerd by this flag in cpombination with the fan state change flag
}


//MTH TIMER 2 Handler temperature_timer
void temperature_timer_event_handler(nrf_timer_event_t event_type, void* p_context)
{
		switch (event_type)
		{
				case NRF_TIMER_EVENT_COMPARE0:
				
						if (Boot_Flag == 1)
						{
								if (Boot_Timer != 0)
								{
										Boot_Timer--;
								}
								else if (Boot_Timer == 0)
								{
										Boot_Flag = 0;
								}
						}
						RateChangeTimer--;

						set_sample_temp(1);
				
						break;
				default:
						//Do nothing.
						break;
		}
}


//ST TIMER 3 Handler FAN_timer
void fan_update_event_handler(nrf_timer_event_t event_type, void* p_context)
{
     switch (event_type)
    {
            
			case NRF_TIMER_EVENT_COMPARE1:
				if(FAN_STATUS == 0)
				{
					update_fan_status(1);
				}
				else
				{
					update_fan_status(0);
				}
			break;
			
      case NRF_TIMER_EVENT_COMPARE0:
				update_fan_status(0);				
      break;    
						
        default:
            //Do nothing.
            break;
    }
}


/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**
* @brief SPI user event handler.
* @param event
*/
void spi_event_handler(nrf_drv_spi_evt_t const * p_event,
                       void *                    p_context)
{
		spi_xfer_done = true;

}

/**
 * @brief TWI events handler.
 */
void twi_handler(nrf_drv_twi_evt_t const * p_event, void * p_context)
{
    switch (p_event->type)
    {
        case NRF_DRV_TWI_EVT_DONE:
            if (p_event->xfer_desc.type == NRF_DRV_TWI_XFER_RX)
            {
                //data_handler(m_sample);
            }
            mTWI_xfer_done = true;
            break;
				case NRF_DRV_TWI_EVT_ADDRESS_NACK:
						break;
				case NRF_DRV_TWI_EVT_DATA_NACK:
						break;
        default:
            break;
    }
}

/**
* @brief SPI event setup.
* @param none
*/

static void spi_event_setup (void){
	
		nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG;
    spi_config.ss_pin   = ADS1018_SPI_SS_1; 	//Dyna Q
    spi_config.miso_pin = ADS1018_SPI_MISO;
    spi_config.mosi_pin = ADS1018_SPI_MOSI;
    spi_config.sck_pin  = ADS1018_SPI_SCK;
		spi_config.frequency = NRF_DRV_SPI_FREQ_250K;
    APP_ERROR_CHECK(nrf_drv_spi_init(&SPI_master, &spi_config, spi_event_handler, NULL));
}

/*****************ST - HANDLER FOR MISO CONVERSION READY********************/
void in_pin_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action){
   
		data_ready = true; 
}

/**********************ST - ENABLES MISO DATA READY CHECK*******************/
static void gpio_init(void){

	ret_code_t err_code; 
	
//	err_code = nrf_drv_gpiote_init();
//	APP_ERROR_CHECK(err_code);

  nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
	in_config.pull = NRF_GPIO_PIN_PULLUP;

  err_code = nrf_drv_gpiote_in_init(ADS1018_SPI_MISO, &in_config, in_pin_handler);
	APP_ERROR_CHECK(err_code);
    

  nrf_drv_gpiote_in_event_enable(ADS1018_SPI_MISO, true);
}


void twi_init (void)
{
    ret_code_t err_code;

    const nrf_drv_twi_config_t twi_lm75b_config = {
       .frequency          = NRF_TWI_FREQ_100K,
       .scl                = LED_DRV_I2C_SCL,
       .sda                = LED_DRV_I2C_SDA,
       .interrupt_priority = APP_IRQ_PRIORITY_HIGHEST,
       .clear_bus_init     = false,
       .hold_bus_uninit  = false
    };

    err_code = nrf_drv_twi_init(&I2C_twi_master, &twi_lm75b_config, twi_handler, NULL);
    APP_ERROR_CHECK(err_code);

    NRF_GPIO->PIN_CNF[LED_DRV_I2C_SCL] = 
        (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
      | (GPIO_PIN_CNF_DRIVE_S0D1     << GPIO_PIN_CNF_DRIVE_Pos)
      | (GPIO_PIN_CNF_PULL_Disabled  << GPIO_PIN_CNF_PULL_Pos)                                        //Clock Pullup/Disabled
      | (GPIO_PIN_CNF_INPUT_Connect  << GPIO_PIN_CNF_INPUT_Pos)
      | (GPIO_PIN_CNF_DIR_Input      << GPIO_PIN_CNF_DIR_Pos);

    NRF_GPIO->PIN_CNF[LED_DRV_I2C_SDA] =
        (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
      | (GPIO_PIN_CNF_DRIVE_S0D1     << GPIO_PIN_CNF_DRIVE_Pos)
      | (GPIO_PIN_CNF_PULL_Disabled  << GPIO_PIN_CNF_PULL_Pos)                                        //Data Pullup/Disabled
      | (GPIO_PIN_CNF_INPUT_Connect  << GPIO_PIN_CNF_INPUT_Pos)
      | (GPIO_PIN_CNF_DIR_Input      << GPIO_PIN_CNF_DIR_Pos);

    nrf_drv_twi_enable(&I2C_twi_master);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_nus    Nordic UART Service structure.
 * @param[in] p_data   Data to be send to UART module.
 * @param[in] length   Length of the data.
 */
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_evt_t * p_evt)
{

    if (p_evt->type == BLE_NUS_EVT_RX_DATA)
    {
        uint32_t err_code;

        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
        {
            do
            {
                err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
            } while (err_code == NRF_ERROR_BUSY);
        }
        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length-1] == '\r')
        {
            while (app_uart_put('\n') == NRF_ERROR_BUSY);
        }
    }

}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t       err_code;
    ble_nus_init_t nus_init;

    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

#ifndef S140
        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;
#endif

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
            err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);
            break;
#if !defined (S112)
         case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
        {
            ble_gap_data_length_params_t dl_params;

            // Clearing the struct will effectivly set members to @ref BLE_GAP_DATA_LENGTH_AUTO
            memset(&dl_params, 0, sizeof(ble_gap_data_length_params_t));
            err_code = sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, &dl_params, NULL);
            APP_ERROR_CHECK(err_code);
        } break;
#endif //!defined (S112)
        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_EVT_USER_MEM_REQUEST:
            err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
        {
            ble_gatts_evt_rw_authorize_request_t  req;
            ble_gatts_rw_authorize_reply_params_t auth_reply;

            req = p_ble_evt->evt.gatts_evt.params.authorize_request;

            if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID)
            {
                if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ)     ||
                    (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) ||
                    (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL))
                {
                    if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
                    {
                        auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
                    }
                    else
                    {
                        auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ;
                    }
                    auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED;
                    err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle,
                                                               &auth_reply);
                    APP_ERROR_CHECK(err_code);
                }
            }
        } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, 64);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;

            if ((data_array[index - 1] == '\n') || (index >= (m_ble_nus_max_data_len)))
            {
                NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                do
                {
                    uint16_t length = (uint16_t)index;
                    err_code = ble_nus_string_send(&m_nus, data_array, &length);
                    if ( (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) )
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);

                index = 0;
            }
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
}
/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
        .baud_rate    = NRF_UART_BAUDRATE_115200
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_TIMEOUT_IN_SECONDS;					/// 3 seconds timeout = APP_ADV_TIMEOUT_IN_SECONDS

    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for placing the application in low power state while waiting for events.
 */
static void power_manage(void)
{
    uint32_t err_code = sd_app_evt_wait();
    APP_ERROR_CHECK(err_code);
}


/**@brief Application main function.
 */
int main(void)
{
    uint32_t err_code;
    bool     erase_bonds;
		
		//Timer 2 variables
		uint32_t time_ticks_3;
		uint32_t time_ms_temp_sample = 500; //take a temperature measurement every 500ms

		//Timer 3 variables -- 8 second timer for AUTO_OFFSET
		uint32_t time_ms = FanOnTime; 
		uint32_t time_ms_2 = CycleTimer_X;
    uint32_t time_ticks;
		uint32_t time_ticks_2;		
	
	
    // Initialize.
    err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);

    uart_init();
    log_init();

    buttons_leds_init(&erase_bonds);



		
    //MTH - Configure Timer 2 used for controlling when temperature is sampled and when the auto offset is applied
    nrf_drv_timer_config_t timer_cfg_2 = NRF_DRV_TIMER_DEFAULT_CONFIG;
    err_code = nrf_drv_timer_init(&TEMPERATURE_TIMER, &timer_cfg_2, temperature_timer_event_handler);
    APP_ERROR_CHECK(err_code);
		
    time_ticks_3 = nrf_drv_timer_ms_to_ticks(&TEMPERATURE_TIMER, time_ms_temp_sample);
                    
		nrf_drv_timer_extended_compare(&TEMPERATURE_TIMER, NRF_TIMER_CC_CHANNEL0, time_ticks_3, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);

    nrf_drv_timer_enable(&TEMPERATURE_TIMER);



		//Configure FAN_UPDATE for generating simple light effect - leds on board will invert his state one after the other.
    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    err_code = nrf_drv_timer_init(&FAN_UPDATE, &timer_cfg, fan_update_event_handler);
    APP_ERROR_CHECK(err_code);
		
    time_ticks = nrf_drv_timer_ms_to_ticks(&FAN_UPDATE, time_ms);
		time_ticks_2 = nrf_drv_timer_ms_to_ticks(&FAN_UPDATE, time_ms_2);
		
    nrf_drv_timer_compare(&FAN_UPDATE, NRF_TIMER_CC_CHANNEL0, time_ticks, true);
                           
		nrf_drv_timer_extended_compare(
    &FAN_UPDATE, NRF_TIMER_CC_CHANNEL1, time_ticks_2, NRF_TIMER_SHORT_COMPARE1_CLEAR_MASK, true);

    nrf_drv_timer_enable(&FAN_UPDATE);
		
		APP_ERROR_CHECK(NRF_LOG_INIT(NULL));
		
		/********************** ST - SPI CONFIGURATION SETUP ***************************************/

		gpio_init();															//Enable MISO data_ready flag; uses in_pin _handler
		spi_event_setup ();												//Setup spi pins, frequency and mode

		init_ADS1018_ADC();												//Initialize ADS1018 chip - ST
		
		/********************** ST - I2C CONFIGURATION SETUP ***************************************/
//		twi_init();																//Setup i2c pins
//		drv_TLC59116_init();											//Initialize TLC59116 chip											 
			
		//ble 
		ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();

    printf("\r\nUART Start!\r\n");
    NRF_LOG_INFO("UART Start!");
    err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
		// ble end
		


    // Enter main loop.
    while (1) {
				//ble
        UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
        power_manage();
				//ble end
				
    }
}


/**
 * @}
 */

Parents Reply
  • 0x0 is the return code for NRF_SUCCESS which is what you normally want a function call to return. Any other value indicates that an error occurred. 

    Tandon said:
    I see the same when everything in int main() is commented out. Only soft device is loaded. I have verified the functionality of the chip with out a softdevice loaded. Any similar issues youve encountered in the past? I also have raised the priority to 3

     The Softdevice should not impact the application if it's not doing anything. E.g., maintaining active BLE connections, etc. It will not write anything to the GPIO or TWI registers. 

    Maybe you can upload your whole project (the last one with everything in main() commented out)? I can try to do some debugging here.

Children
Related