nrf52805: ADC polling mode issue

Hardware setup: Custom board using BC805M-P (with App protect)
Software: nrf5 SDK S112 v17.0.2 ->Segger V7.30

My Objective: 

measure the Li-ion battery voltage(4.2V -100% till 3.6V-0%) through an external resistive divider & internal 0.6v ref voltage. (I'm not worried about the current consumption as of this moment. would like to make this concept work & all the other optimisations shall see later. Regarding optimisations yes I'm aware of this page: https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/measuring-lithium-battery-voltage-with-nrf52)

What works so far?
for the moment my example measured voltage value is being transmitted over BLE through the battery service. it's all working well.
But the ADC is just measuring some garbage value (random) which is clearly not correct.

My concept of ADC polling mode is taken from this post & modified for my work. https://devzone.nordicsemi.com/f/nordic-q-a/14486/measuring-the-battery-voltage-with-nrf52832/129422

// Input range of External Vdd measurement = (0.6 V)/(1/5) = 3 V
// 3.0 volts ->  16383 ADC counts with 14-bit sampling:  5461 counts per volt
// 3.0 volts ->  4095 ADC counts with 12-bit sampling:  1365 counts per volt

#define ADC12_COUNTS_PER_VOLT 5461

void Adc12bitPolledInitialise(void)
{
    uint32_t timeout = 10;
    nrf_saadc_channel_config_t myConfig =
    {
        .resistor_p = NRF_SAADC_RESISTOR_DISABLED,
        .resistor_n = NRF_SAADC_RESISTOR_DISABLED,
        .gain       = NRF_SAADC_GAIN1_5,            // (1/5) Gain
        .reference  = NRF_SAADC_REFERENCE_INTERNAL, // 0.6V internal Ref Voltage
        .acq_time   = NRF_SAADC_ACQTIME_40US,       // See max source resistancetable
        .mode       = NRF_SAADC_MODE_SINGLE_ENDED,
        .burst      = NRF_SAADC_BURST_DISABLED,
        .pin_p      = NRF_SAADC_INPUT_AIN2,         // AIN2 for input Pin
        .pin_n      = NRF_SAADC_INPUT_DISABLED
    };

    nrf_saadc_resolution_set((nrf_saadc_resolution_t) 3);   // 2 is 12-bit , 3 for 14-bit 
    nrf_saadc_oversample_set((nrf_saadc_oversample_t) 2);   // 2 is 4x, about 150uSecs total
    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    nrf_saadc_enable();

    NRF_SAADC->CH[1].CONFIG =
              ((myConfig.resistor_p << SAADC_CH_CONFIG_RESP_Pos)   & SAADC_CH_CONFIG_RESP_Msk)
            | ((myConfig.resistor_n << SAADC_CH_CONFIG_RESN_Pos)   & SAADC_CH_CONFIG_RESN_Msk)
            | ((myConfig.gain       << SAADC_CH_CONFIG_GAIN_Pos)   & SAADC_CH_CONFIG_GAIN_Msk)
            | ((myConfig.reference  << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk)
            | ((myConfig.acq_time   << SAADC_CH_CONFIG_TACQ_Pos)   & SAADC_CH_CONFIG_TACQ_Msk)
            | ((myConfig.mode       << SAADC_CH_CONFIG_MODE_Pos)   & SAADC_CH_CONFIG_MODE_Msk)
            | ((myConfig.burst      << SAADC_CH_CONFIG_BURST_Pos)  & SAADC_CH_CONFIG_BURST_Msk);

    NRF_SAADC->CH[1].PSELN = myConfig.pin_n;
    NRF_SAADC->CH[1].PSELP = myConfig.pin_p;
}

void ble_Update_BatteryVoltage(void)
{
    // Enable command & Turn on the Power
    nrf_gpio_pin_write(ADC_SWITCH, 1); //turning on the voltage bridge on with a transistor
    nrf_saadc_enable();

    uint16_t result = 9999;         // Some recognisable dummy value
    uint32_t timeout = 100000;       // Trial and error
    volatile int16_t buffer[8];

    NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
    NRF_SAADC->RESULT.MAXCNT = 1;

    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);

    if (timeout != 0)
    {
        result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
        5)) / ADC12_COUNTS_PER_VOLT;
    }

    while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
    {
        timeout--;
    }
    nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);

    // Disable command & turn off the Power to ADC Bridge to reduce power consumption
    nrf_saadc_disable();
    
    nrf_gpio_pin_write(ADC_SWITCH, 0); //turning off the voltage bridge on with a transistor
    ble_bas_battery_level_update(&m_bas, result, m_conn_handle); 
}


The ADC result value is clearly not accurately working when I'm just calling the function manually upon a button press. ble_Update_BatteryVoltage();

What am I doing wrong?

Thanks, for any valuable input I'm new to NRF. 
Gokunath 

Parents
  • Hi Gokulnath,

    My Objective: 

    measure the Li-ion battery voltage(4.2V -100% till 3.6V-0%) through an external resistive divider & internal 0.6v ref voltage. (I'm not worried about the current consumption as of this moment. would like to make this concept work & all the other optimisations shall see later

    You could try the peripheral/saadc sample in nRF5 SDK.

    But the ADC is just measuring some garbage value (random) which is clearly not correct.

    What does this look like? Would you be able to provide an example? Does the this change if you change the voltage?

    Thanks, for any valuable input I'm new to NRF. 

    nRF Connect SDK is recommended for new designs. Please see the nRF Connect SDK and nRF5 SDK statement as well as the nRF Connect SDK Fundamentals course at Nordic Developer Academy.

    https://www.nordicsemi.com/Products/Development-software/nrf-connect-sdk

    Here are some samples for nRF Connect SDK. You could start with simple_blocking or simple_nonblocking: hal_nordic/nrfx/samples/src/nrfx_saadc at master · zephyrproject-rtos/hal_nordic · GitHub

  • There is a bug here, the result is read before the SAADC sample has completed:

        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
            5)) / ADC12_COUNTS_PER_VOLT;
        }
    
        while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
        {
            timeout--;
        }

    Change to:

        while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
        {
            timeout--;
        }
        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
            5)) / ADC12_COUNTS_PER_VOLT;
        }

  • Hey,

    I've made these suggested changes. 

    Ofc the value oscillation is better than before but still, it moves a lot.

    ->My voltage bridge is always on for this particular test & I verified it on the Circuit level during operation

    My new code below:

    // Input range of internal Vdd measurement = (0.6 V)/(1/5) = 3 V
    // 3.0 volts ->  16383 ADC counts with 14-bit sampling:  5461 counts per volt
    // 3.0 volts ->  4095 ADC counts with 14-bit sampling:  1365 counts per volt
    
    #define ADC12_COUNTS_PER_VOLT 5461
    
    void Adc12bitPolledInitialise(void)
    {
        uint32_t timeout = 10;
        nrf_saadc_channel_config_t myConfig =
        {
            .resistor_p = NRF_SAADC_RESISTOR_DISABLED,
            .resistor_n = NRF_SAADC_RESISTOR_DISABLED,
            .gain       = NRF_SAADC_GAIN1_5,            // (1/5) Gain
            .reference  = NRF_SAADC_REFERENCE_INTERNAL, // 0.6V internal Ref Voltage
            .acq_time   = NRF_SAADC_ACQTIME_40US,       // See max source resistancetable
            .mode       = NRF_SAADC_MODE_SINGLE_ENDED,
            .burst      = NRF_SAADC_BURST_DISABLED,
            .pin_p      = NRF_SAADC_INPUT_AIN2,         // AIN2 for input Pin
            .pin_n      = NRF_SAADC_INPUT_DISABLED
        };
    
        nrf_saadc_resolution_set((nrf_saadc_resolution_t) 3);   // 2 is 12-bit , 3 for 14-bit 
        //nrf_saadc_oversample_set((nrf_saadc_oversample_t) 2);   // 2 is 4x, about 150uSecs total
        nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        nrf_saadc_enable();
    
        NRF_SAADC->CH[1].CONFIG =
                  ((myConfig.resistor_p << SAADC_CH_CONFIG_RESP_Pos)   & SAADC_CH_CONFIG_RESP_Msk)
                | ((myConfig.resistor_n << SAADC_CH_CONFIG_RESN_Pos)   & SAADC_CH_CONFIG_RESN_Msk)
                | ((myConfig.gain       << SAADC_CH_CONFIG_GAIN_Pos)   & SAADC_CH_CONFIG_GAIN_Msk)
                | ((myConfig.reference  << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk)
                | ((myConfig.acq_time   << SAADC_CH_CONFIG_TACQ_Pos)   & SAADC_CH_CONFIG_TACQ_Msk)
                | ((myConfig.mode       << SAADC_CH_CONFIG_MODE_Pos)   & SAADC_CH_CONFIG_MODE_Msk)
                | ((myConfig.burst      << SAADC_CH_CONFIG_BURST_Pos)  & SAADC_CH_CONFIG_BURST_Msk);
    
        NRF_SAADC->CH[1].PSELN = myConfig.pin_n;
        NRF_SAADC->CH[1].PSELP = myConfig.pin_p;
        nrf_gpio_pin_write(ADC_SWITCH, 1); //Turning on  the voltage divider with a transistor
    }
    
    void ble_Update_BatteryVoltage(void)
    {
        // Enable command & Turn on the Power
        //nrf_gpio_pin_write(ADC_SWITCH, 1); //Turning on  the voltage divider with a transistor
        nrf_saadc_enable();
    
        uint16_t result = 9999;         // Some recognisable dummy value
        uint32_t timeout = 100000;       // Trial and error
        volatile int16_t buffer[100];
    
        NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
        NRF_SAADC->RESULT.MAXCNT = 1;
    
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
    
        while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
        {
            timeout--;
        }
    
        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
        }
    
        nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
    
        // Disable command & turn off the Power to ADC Bridge to reduce power consumption
        nrf_saadc_disable();
        
        //nrf_gpio_pin_write(ADC_SWITCH, 0); //Turning off the voltage divider transistor
        ble_bas_battery_level_update(&m_bas, result, m_conn_handle); 
    }
    
    



    Regarding the example output which you asked  

    I've just parsed the output of the Battery for each button press on the BLE terminal into the txt file for simpler understanding. (All the numbers are in hex format)

    What does this look like? Would you be able to provide an example? Does the this change if you change the voltage?

    Voltage on BLE // 4.11V on voltage divider input from a Bench Power supply.
    I      0BLEParserBase.CopyToRawData:Data:0x76
    I      0BLEParserBase.CopyToRawData:Data:0x79
    I      0BLEParserBase.CopyToRawData:Data:0x89
    I      0BLEParserBase.CopyToRawData:Data:0x73
    I      0BLEParserBase.CopyToRawData:Data:0x75
    I      0BLEParserBase.CopyToRawData:Data:0x75
    I      0BLEParserBase.CopyToRawData:Data:0x7A
    I      0BLEParserBase.CopyToRawData:Data:0x6B
    I      0BLEParserBase.CopyToRawData:Data:0x75
    I      0BLEParserBase.CopyToRawData:Data:0x7B
    I      0BLEParserBase.CopyToRawData:Data:0x7E
    I      0BLEParserBase.CopyToRawData:Data:0x78
    
    Voltage on BLE // 3.68V on voltage divider input from  a Bench Power supply.
    
    I      0BLEParserBase.CopyToRawData:Data:0x4C
    I      0BLEParserBase.CopyToRawData:Data:0x40
    I      0BLEParserBase.CopyToRawData:Data:0x4B
    I      0BLEParserBase.CopyToRawData:Data:0x4B
    I      0BLEParserBase.CopyToRawData:Data:0x4A
    I      0BLEParserBase.CopyToRawData:Data:0x4B
    I      0BLEParserBase.CopyToRawData:Data:0x48
    I      0BLEParserBase.CopyToRawData:Data:0x46
    I      0BLEParserBase.CopyToRawData:Data:0x4A
    I      0BLEParserBase.CopyToRawData:Data:0x40
    I      0BLEParserBase.CopyToRawData:Data:0x45
    I      0BLEParserBase.CopyToRawData:Data:0x4B
    I      0BLEParserBase.CopyToRawData:Data:0x4D
    

    My Observations:
    I could see the Voltage on BLE clearly moves to the changes in input, My question is why it's not as stable as the bare-metal saadc example when I access it on the above polling method when the input voltage is constant?  


    My other trials:
    I've tried the default saadc peripheral example from the SDK 17.0.2 /17.1 
    It outputs the value stable on the 52DK via uart. it also responds to the changes to the input voltage accurately.

    But when I add the same code with the BLE stack the output has the same oscillation issue as mentioned in the above output text.

    Thanks for your inputs. 

  • BLE transmissions require current bursts, and even small such current bursts load the battery and are observable as voltage dips due to internal battery impedance which show up as disturbances in the measured voltage readings. Several options to reduce these voltage measurement dips: 1) sample the SAADC prior to a BLE burst (see Radio events); 2) add a filter capacitor between ADC IN 2 (AIN) and GND eg 100nF or more. Time constant of 100nF with 120k to battery is 12mSec, but for battery measurement probably an even slower value would be acceptable. The bigger the capacitor, the more even the voltage readings. 3) Use averaging; averaging is always better and for battery capacity response time is not significant.

    Often two battery indications are required; battery voltage for capacity and lowest voltage dip for pending reset or brownout problems. Use averaging for the former and single values for the latter. Maybe even use 2 SAADC inputs, one with filter capacitor and one not to allow both fast sampling via comparator or SAADC and one for slower voltage measurement for capacity, probably overkill.

  • I wrote this filter for a similar application; try it to see if it gives you what you are looking for

    // Limit excursions such as noise spikes; for a step change this enforces a
    // linear ramp or descent
    // For 250 mVolts, 3300mV FSD and 12-bit ADC => ((250*4096)/3300) = 310
    #define NOISE_SPIKE_CLIP_VALUE  310
    
    // Equaliser single-pole low-pass filter value (0 is off). Increasing this value
    // might require checking not overranging variables which FILTER_VALUE is assigned to.
    #define FILTER_VALUE  16
    
    #define FILTER_HOLDOFF_TRIP_LEVEL 16
    
    // ADC Filter initial hold-off counter
    uint16_t FilterHoldoffCounter = 0;
    // Measured battery voltage - filtered value
    uint16_t MeasuredBatteryVoltage;
    
    void LowPassFilter(uint16_t *FilteredValue, uint16_t NewValue)
    /*
     * This function implements a slew-rate limiting noise spike filter
     * followed by a single pole low-pass filter.
     *
     * Noise Spike Filter:
     *
     * Clip any signals to remain within 0.x volts of current filtered value
     *
     * Single-pole low-pass filter:
     *
     *    FV = ((1-n)*FV + n*V)/n where n=1/FILTER_VALUE
     *
     * The filter kicks in after 5 time constants which allows the filter to
     * settle to 12-bit resolution before taking over
     *
     * If FILTER_VALUE is constrained to lie between 0 (off) and 32 then 16-bit
     * unsigned arithmetic may be used since with a full-scale input reading
     * of 0x07FF (32-1)*0x7FF + 0x7FF + (32/2) = 65520 which fits in 16-bits
     * Otherwise 32-bit calculation is required. For ARM use 32-bit always
     */
    {
        uint16_t LocalFilteredValue = *FilteredValue;
        uint16_t SpikeClippedValue;
    
        // Set initial value to be spike-clipped (slew-rate limited)
        SpikeClippedValue = NewValue;
    
        // Check if new value is above or below above current filtered value
        if (NewValue >= LocalFilteredValue)    // +ve signal excursion
        {
            // Clip input if more than 0.5 volts above current filtered value
            if (NewValue > LocalFilteredValue + NOISE_SPIKE_CLIP_VALUE)
            {
                SpikeClippedValue = LocalFilteredValue + NOISE_SPIKE_CLIP_VALUE;
            }
        }
        else  // -ve signal excursion
        {
            // Clip input if more than 0.5 volts below current filtered value
            if ((LocalFilteredValue - NewValue) > NOISE_SPIKE_CLIP_VALUE)
            {
                SpikeClippedValue = LocalFilteredValue - NOISE_SPIKE_CLIP_VALUE;
            }
        }
    
        // Either no filter or no processing required for speed, just return value
        #if (!FILTER_VALUE) //|| defined(USE_ADC12B_MULTIPLE_SAMPLES)
        {
            *FilteredValue = SpikeClippedValue;  // Filter disabled
            return;
        }
        #else //if (!FILTER_VALUE)
    
        LocalFilteredValue = (LocalFilteredValue*(FILTER_VALUE-1))
                           + SpikeClippedValue + (FILTER_VALUE/2);
        LocalFilteredValue /= FILTER_VALUE;
    
        // Filter settles to final 12-bit value within 5 time-constants, check ready
        // This is only used on exit hibernate and initial power-on cold start where
        // all channels are continually read to condition the filters. Prior to that
        // FilterHoldoffCounter must be initialized to 0.
        if ( FilterHoldoffCounter > FILTER_HOLDOFF_TRIP_LEVEL )
        {
            *FilteredValue = LocalFilteredValue;
        }
        else
        {
            FilterHoldoffCounter++;          // Waiting for initial stable reading
            *FilteredValue = NewValue;
        }
        #endif //if (!FILTER_VALUE)
    }

  • Hi    

    I've noticed in debugging that my averaging might not be correct due to that I suspect it's moving a lot. 

    can you please verify it,

        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
            5)) / ADC12_COUNTS_PER_VOLT;
        }
     especially this line? 


    EDIT:
    sorry there was my typo during copy pasting the code in this thread. my correct code is still this.

    result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;


    Thanks,
    Gokulnath A R

Reply
  • Hi    

    I've noticed in debugging that my averaging might not be correct due to that I suspect it's moving a lot. 

    can you please verify it,

        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
            5)) / ADC12_COUNTS_PER_VOLT;
        }
     especially this line? 


    EDIT:
    sorry there was my typo during copy pasting the code in this thread. my correct code is still this.

    result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;


    Thanks,
    Gokulnath A R

Children
  • Hi Gokulnath, sorry for the delay.

    Some context is missing. However, it looks like you are performing many steps in only a few lines. Why not break up the calculations and print out the intermediate values? That way you could confirm that you are performing the intended calculations.

  • There is a typo in this line, which was correct in your earlier post. Also note that this is not averaging, it is rounding; this means the averaging is presumably performed in ble_bas_battery_level_update()

    // This line rounds the reading
    Change
        result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/5)) / ADC12_COUNTS_PER_VOLT;
    To
        result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;

    You can add the averaging I posted earlier, something like this:

    void LowPassFilter(uint16_t *FilteredValue, result);
    
    // Measured battery voltage - filtered value
    static uint16_t MeasuredBatteryVoltage = 0;
    
        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
            LowPassFilter(&MeasuredBatteryVoltage, result);
            // Use filtered value instead of raw sample
            result = MeasuredBatteryVoltage;
        }
    .. snip ..
        ble_bas_battery_level_update(&m_bas, result, m_conn_handle); 
    
        return result;

    Edit: If using the circuit first posted,  the numbers in the log don't look correct:

    Vadc = Vbat*300/(120+300) = (Vbat*300)/420
    Vadc411 = 2936 mV
    Vadc368 = 2629 mV
    
    // Input range of internal Vdd measurement = (0.6 V)/(1/5) = 3 V
    // 3.0 volts ->  16383 ADC counts with 14-bit sampling:  5461 counts per volt
    // 3.0 volts ->   4095 ADC counts with 14-bit sampling:  1365 counts per volt
    Vadc411 = 2936 mV = 16033 counts with 14-bit sampling
    Vadc411 = 2936 mV =  4007 counts with 12-bit sampling
    
    result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
    result411 = ((16033 * 1000)+(5461/2))/5461 = 2936 with 14-bit sampling
    result411 = (( 4007 * 1000)+(1365/2))/1365 = 2936 with 12-bit sampling
    Vbat = 2936 * (120+300)/300 = 4110 mV = 4.11 V
    
    From the log:
    Voltage on BLE // 4.11V on voltage divider input from a Bench Power supply.
    I      0BLEParserBase.CopyToRawData:Data:0x76  <<== 118, should be 0x678 for 14-bit, 0x555 for 12-bit

    Maybe explicitly cast to uint32_t to ensure 32-bit processing:

    // Ensure 32-bit processing:
    result = (uint16_t)(((uint32_t)buffer[0] * 1000UL)+((uint32_t)ADC12_COUNTS_PER_VOLT/2)) / (uint32_t)ADC12_COUNTS_PER_VOLT);

    Helsing's suggestion of printing out intermediate steps is the best way to verify the code is doing what you expect.

  • Hey,

    Sorry for my delay in updating this thread with my hardware changes.

    Just an update I've updated the custom PCB to this & This would be my current most updated hardware setting.

    I haven't implemented your filter on the software yet.

    With this current configuration (2 versions of Custom PCB), I have an oscillation delta of +-8% in both versions PCB from the true battery charge %.

    (Just incase I've shunted the Transistor too(For Testing purposes) to see if it makes any change in output BUT the result remains the same)

    In Both Versions of PCB the ADC Voltage Divider Ratio is the same.

    Version 1 with ADC Switch PCB Below: 
      

    Version 2 without Transistor Switch PCB Below:

     

    In Both Versions of the PCB I've added Ferrite Beads for EMC stability like shown below (Ofc Version 2 PCB doesn't have ADC switch input like shown below.)



    My current ADC input is AIN3.

    My Desired Battery voltage range is this: 4.2V 100% => 3.63V 0%

    I explicitly add a software delay to make the capacitor charge too to avoid any inconsistencies in the hardware voltage level.

    my latest adc code is below:


    void Adc12bitPolledInitialise(void)
    {
        uint32_t timeout = 10;
        nrf_saadc_channel_config_t myConfig =
        {
            .resistor_p = NRF_SAADC_RESISTOR_DISABLED,
            .resistor_n = NRF_SAADC_RESISTOR_DISABLED,
            .gain       = NRF_SAADC_GAIN1_5,            // (1/5) Gain
            .reference  = NRF_SAADC_REFERENCE_INTERNAL, // 0.6V internal Ref Voltage
            .acq_time   = NRF_SAADC_ACQTIME_40US,       // See max source resistancetable
            .mode       = NRF_SAADC_MODE_SINGLE_ENDED,
            .burst      = NRF_SAADC_BURST_DISABLED,
            .pin_p      = NRF_SAADC_INPUT_AIN3,         // AIN3 for input Pin
            .pin_n      = NRF_SAADC_INPUT_DISABLED
        };
    
        nrf_saadc_resolution_set((nrf_saadc_resolution_t) 3);   // 2 is 12-bit , 3 for 14-bit 
        //nrf_saadc_oversample_set((nrf_saadc_oversample_t) 2);   // 2 is 4x, about 150uSecs total
        nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        nrf_saadc_enable();
    
        NRF_SAADC->CH[1].CONFIG =
                  ((myConfig.resistor_p << SAADC_CH_CONFIG_RESP_Pos)   & SAADC_CH_CONFIG_RESP_Msk)
                | ((myConfig.resistor_n << SAADC_CH_CONFIG_RESN_Pos)   & SAADC_CH_CONFIG_RESN_Msk)
                | ((myConfig.gain       << SAADC_CH_CONFIG_GAIN_Pos)   & SAADC_CH_CONFIG_GAIN_Msk)
                | ((myConfig.reference  << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk)
                | ((myConfig.acq_time   << SAADC_CH_CONFIG_TACQ_Pos)   & SAADC_CH_CONFIG_TACQ_Msk)
                | ((myConfig.mode       << SAADC_CH_CONFIG_MODE_Pos)   & SAADC_CH_CONFIG_MODE_Msk)
                | ((myConfig.burst      << SAADC_CH_CONFIG_BURST_Pos)  & SAADC_CH_CONFIG_BURST_Msk);
    
        NRF_SAADC->CH[1].PSELN = myConfig.pin_n;
        NRF_SAADC->CH[1].PSELP = myConfig.pin_p;
        nrf_gpio_pin_write(ADC_SWITCH, 1); //Turning on  the voltage divider with a transistor
    }
    
    void ble_Update_BatteryVoltage(void)
    {
        // Enable command & Turn on the Power
        nrf_gpio_pin_write(ADC_SWITCH, 1); //Turning on  the voltage divider with a transistor
        nrf_saadc_enable();
    
        nrf_delay_ms(100); // add a delay to make the capacitor charge 
    
        uint16_t result = 0;              // Some recognisable dummy value
        uint32_t timeout = 1000000;       // Trial and error
        volatile int32_t buffer[20];
    
        NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
        NRF_SAADC->RESULT.MAXCNT = 1;
    
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
    
        while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
        {
            timeout--;
        }
    
        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
            result += 5;
        }
    
        // Disable command & turn off the Power to ADC Bridge to reduce power consumption
        nrf_gpio_pin_write(ADC_SWITCH, 0); //Turning off the voltage divider transistor
        nrf_saadc_disable();
    
        nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        
        while(result>100 && result >0)
        {
        result = result%100;
        }
        
        if(Old_Bat != result && result >=1 && result !=0)
        {
    
        if(result<=17)
        {
        result = 5;
        nrf_gpio_pin_write(BLUE_LED, 0); //Turning on the LOW BAttery Flash LED
        nrf_delay_ms(1000); // add a delay to make the capacitor charge 
        nrf_gpio_pin_write(BLUE_LED, 1); //Turning off the LOW BAttery Flash LED   
        }
        
        Old_Bat = result;
        ble_bas_battery_level_update(&m_bas, result, m_conn_handle);
        }
        
    }



    Since I thought there was a fundamental problem with my code/hardware configuration I didn't add the software filter yet. 

    if there seems to be no fundamental error on this config I shall proceed to add the software filter which you guys suggested.

    In this above code, I've just added some phantom code to round off the results + some offset so that the result always comes between 0-100% on BLE.

    especially here below: 

    while(result>100 && result >0)
        {
        result = result%100;
        }
        
        if(Old_Bat != result && result >=1 && result !=0)
        {
    
        if(result<=17)
        {
        result = 5;


    P.S. If you need a log for this setup I can provide you with one. (the previous log in this forum thread is not from this latest setup)

    Thanks in advance,
    Gokulnath A R

  • Hi Gokulnath, sorry for the long delay.

    What are the reslults from your lateste updated code?

    Anyways, looking over this thread, somthing that seems to be missing is the wait for the SAADC to be ready, by checking for the NRF_SAADC_EVENT_STARTED event. By adding a check for the NRF_SAADC_EVENT_STARTED event before initiating sampling, you can ensure that the ADC has fully powered up and stabilized:

    // Start the SAADC to prepare for sampling
    nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
    
    // Wait until the SAADC is ready (EVENT_STARTED is set)
    while (!nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED)) {
        // Optionally, you could add a timeout mechanism here to avoid waiting indefinitely
    }
    
    // Clear the STARTED event to enable detection next time
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    
    // Trigger the SAADC to take a sample now that it is ready
    nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);

  • By making a tiny change and masking out some of your code the raw SAADC results look ok to me without using bust mode or averaging or filtering (using 931k and 200k, so similar):

    Battery 2984
    Battery 2982
    Battery 2966
    Battery 2969
    Battery 2973
    Battery 2964
    Battery 2965
    Battery 2970
    Battery 2968
    Battery 2960
    Battery 2960
    Battery 2958
    Battery 2966
    Battery 2961
    Battery 2960
    Battery 2965
    Battery 2970

    I made these simple changes:

        .gain       = NRF_SAADC_GAIN1, // Gain (was 1.5)
    
        volatile int16_t buffer[20]; // 16-bit signed, not 32-bit signed

    I commented out the maths and added a print:

        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        // Add a printout to test raw data
        char InfoPacket[120] = "";
        snprintf(InfoPacket, sizeof(InfoPacket), "Battery %4d\r\n", result);
        uartSend(InfoPacket, strlen(InfoPacket));
        // Remove the odd maths stuff, that's a non-SAADC issue
    //  while(result>100 && result >0)
    //  {
    //  result = result%100;
    //  }
    //  if(Old_Bat != result && result >=1 && result !=0)
    //  {
    //  if(result<=17)
    //  {
    //  result = 5;
    //  nrf_gpio_pin_write(BLUE_LED, 0); //Turning on the LOW BAttery Flash LED
    //  nrf_delay_ms(1000); // add a delay to make the capacitor charge
    //  nrf_gpio_pin_write(BLUE_LED, 1); //Turning off the LOW BAttery Flash LED
    //  }
    //  Old_Bat = result;
    //  ble_bas_battery_level_update(&m_bas, result, m_conn_handle);
    //  }
    }
    

Related