nrf52805: ADC polling mode issue

Hardware setup: Custom board using BC805M-P (with App protect)
Software: nrf5 SDK S112 v17.0.2 ->Segger V7.30

My Objective: 

measure the Li-ion battery voltage(4.2V -100% till 3.6V-0%) through an external resistive divider & internal 0.6v ref voltage. (I'm not worried about the current consumption as of this moment. would like to make this concept work & all the other optimisations shall see later. Regarding optimisations yes I'm aware of this page: https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/measuring-lithium-battery-voltage-with-nrf52)

What works so far?
for the moment my example measured voltage value is being transmitted over BLE through the battery service. it's all working well.
But the ADC is just measuring some garbage value (random) which is clearly not correct.

My concept of ADC polling mode is taken from this post & modified for my work. https://devzone.nordicsemi.com/f/nordic-q-a/14486/measuring-the-battery-voltage-with-nrf52832/129422

// Input range of External Vdd measurement = (0.6 V)/(1/5) = 3 V
// 3.0 volts ->  16383 ADC counts with 14-bit sampling:  5461 counts per volt
// 3.0 volts ->  4095 ADC counts with 12-bit sampling:  1365 counts per volt

#define ADC12_COUNTS_PER_VOLT 5461

void Adc12bitPolledInitialise(void)
{
    uint32_t timeout = 10;
    nrf_saadc_channel_config_t myConfig =
    {
        .resistor_p = NRF_SAADC_RESISTOR_DISABLED,
        .resistor_n = NRF_SAADC_RESISTOR_DISABLED,
        .gain       = NRF_SAADC_GAIN1_5,            // (1/5) Gain
        .reference  = NRF_SAADC_REFERENCE_INTERNAL, // 0.6V internal Ref Voltage
        .acq_time   = NRF_SAADC_ACQTIME_40US,       // See max source resistancetable
        .mode       = NRF_SAADC_MODE_SINGLE_ENDED,
        .burst      = NRF_SAADC_BURST_DISABLED,
        .pin_p      = NRF_SAADC_INPUT_AIN2,         // AIN2 for input Pin
        .pin_n      = NRF_SAADC_INPUT_DISABLED
    };

    nrf_saadc_resolution_set((nrf_saadc_resolution_t) 3);   // 2 is 12-bit , 3 for 14-bit 
    nrf_saadc_oversample_set((nrf_saadc_oversample_t) 2);   // 2 is 4x, about 150uSecs total
    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    nrf_saadc_enable();

    NRF_SAADC->CH[1].CONFIG =
              ((myConfig.resistor_p << SAADC_CH_CONFIG_RESP_Pos)   & SAADC_CH_CONFIG_RESP_Msk)
            | ((myConfig.resistor_n << SAADC_CH_CONFIG_RESN_Pos)   & SAADC_CH_CONFIG_RESN_Msk)
            | ((myConfig.gain       << SAADC_CH_CONFIG_GAIN_Pos)   & SAADC_CH_CONFIG_GAIN_Msk)
            | ((myConfig.reference  << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk)
            | ((myConfig.acq_time   << SAADC_CH_CONFIG_TACQ_Pos)   & SAADC_CH_CONFIG_TACQ_Msk)
            | ((myConfig.mode       << SAADC_CH_CONFIG_MODE_Pos)   & SAADC_CH_CONFIG_MODE_Msk)
            | ((myConfig.burst      << SAADC_CH_CONFIG_BURST_Pos)  & SAADC_CH_CONFIG_BURST_Msk);

    NRF_SAADC->CH[1].PSELN = myConfig.pin_n;
    NRF_SAADC->CH[1].PSELP = myConfig.pin_p;
}

void ble_Update_BatteryVoltage(void)
{
    // Enable command & Turn on the Power
    nrf_gpio_pin_write(ADC_SWITCH, 1); //turning on the voltage bridge on with a transistor
    nrf_saadc_enable();

    uint16_t result = 9999;         // Some recognisable dummy value
    uint32_t timeout = 100000;       // Trial and error
    volatile int16_t buffer[8];

    NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
    NRF_SAADC->RESULT.MAXCNT = 1;

    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);

    if (timeout != 0)
    {
        result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
        5)) / ADC12_COUNTS_PER_VOLT;
    }

    while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
    {
        timeout--;
    }
    nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);

    // Disable command & turn off the Power to ADC Bridge to reduce power consumption
    nrf_saadc_disable();
    
    nrf_gpio_pin_write(ADC_SWITCH, 0); //turning off the voltage bridge on with a transistor
    ble_bas_battery_level_update(&m_bas, result, m_conn_handle); 
}


The ADC result value is clearly not accurately working when I'm just calling the function manually upon a button press. ble_Update_BatteryVoltage();

What am I doing wrong?

Thanks, for any valuable input I'm new to NRF. 
Gokunath 

Parents
  • Hi Gokulnath,

    My Objective: 

    measure the Li-ion battery voltage(4.2V -100% till 3.6V-0%) through an external resistive divider & internal 0.6v ref voltage. (I'm not worried about the current consumption as of this moment. would like to make this concept work & all the other optimisations shall see later

    You could try the peripheral/saadc sample in nRF5 SDK.

    But the ADC is just measuring some garbage value (random) which is clearly not correct.

    What does this look like? Would you be able to provide an example? Does the this change if you change the voltage?

    Thanks, for any valuable input I'm new to NRF. 

    nRF Connect SDK is recommended for new designs. Please see the nRF Connect SDK and nRF5 SDK statement as well as the nRF Connect SDK Fundamentals course at Nordic Developer Academy.

    https://www.nordicsemi.com/Products/Development-software/nrf-connect-sdk

    Here are some samples for nRF Connect SDK. You could start with simple_blocking or simple_nonblocking: hal_nordic/nrfx/samples/src/nrfx_saadc at master · zephyrproject-rtos/hal_nordic · GitHub

  • There is a bug here, the result is read before the SAADC sample has completed:

        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
            5)) / ADC12_COUNTS_PER_VOLT;
        }
    
        while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
        {
            timeout--;
        }

    Change to:

        while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
        {
            timeout--;
        }
        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/
            5)) / ADC12_COUNTS_PER_VOLT;
        }

  • There is a typo in this line, which was correct in your earlier post. Also note that this is not averaging, it is rounding; this means the averaging is presumably performed in ble_bas_battery_level_update()

    // This line rounds the reading
    Change
        result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/5)) / ADC12_COUNTS_PER_VOLT;
    To
        result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;

    You can add the averaging I posted earlier, something like this:

    void LowPassFilter(uint16_t *FilteredValue, result);
    
    // Measured battery voltage - filtered value
    static uint16_t MeasuredBatteryVoltage = 0;
    
        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
            LowPassFilter(&MeasuredBatteryVoltage, result);
            // Use filtered value instead of raw sample
            result = MeasuredBatteryVoltage;
        }
    .. snip ..
        ble_bas_battery_level_update(&m_bas, result, m_conn_handle); 
    
        return result;

    Edit: If using the circuit first posted,  the numbers in the log don't look correct:

    Vadc = Vbat*300/(120+300) = (Vbat*300)/420
    Vadc411 = 2936 mV
    Vadc368 = 2629 mV
    
    // Input range of internal Vdd measurement = (0.6 V)/(1/5) = 3 V
    // 3.0 volts ->  16383 ADC counts with 14-bit sampling:  5461 counts per volt
    // 3.0 volts ->   4095 ADC counts with 14-bit sampling:  1365 counts per volt
    Vadc411 = 2936 mV = 16033 counts with 14-bit sampling
    Vadc411 = 2936 mV =  4007 counts with 12-bit sampling
    
    result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
    result411 = ((16033 * 1000)+(5461/2))/5461 = 2936 with 14-bit sampling
    result411 = (( 4007 * 1000)+(1365/2))/1365 = 2936 with 12-bit sampling
    Vbat = 2936 * (120+300)/300 = 4110 mV = 4.11 V
    
    From the log:
    Voltage on BLE // 4.11V on voltage divider input from a Bench Power supply.
    I      0BLEParserBase.CopyToRawData:Data:0x76  <<== 118, should be 0x678 for 14-bit, 0x555 for 12-bit

    Maybe explicitly cast to uint32_t to ensure 32-bit processing:

    // Ensure 32-bit processing:
    result = (uint16_t)(((uint32_t)buffer[0] * 1000UL)+((uint32_t)ADC12_COUNTS_PER_VOLT/2)) / (uint32_t)ADC12_COUNTS_PER_VOLT);

    Helsing's suggestion of printing out intermediate steps is the best way to verify the code is doing what you expect.

  • Hey,

    Sorry for my delay in updating this thread with my hardware changes.

    Just an update I've updated the custom PCB to this & This would be my current most updated hardware setting.

    I haven't implemented your filter on the software yet.

    With this current configuration (2 versions of Custom PCB), I have an oscillation delta of +-8% in both versions PCB from the true battery charge %.

    (Just incase I've shunted the Transistor too(For Testing purposes) to see if it makes any change in output BUT the result remains the same)

    In Both Versions of PCB the ADC Voltage Divider Ratio is the same.

    Version 1 with ADC Switch PCB Below: 
      

    Version 2 without Transistor Switch PCB Below:

     

    In Both Versions of the PCB I've added Ferrite Beads for EMC stability like shown below (Ofc Version 2 PCB doesn't have ADC switch input like shown below.)



    My current ADC input is AIN3.

    My Desired Battery voltage range is this: 4.2V 100% => 3.63V 0%

    I explicitly add a software delay to make the capacitor charge too to avoid any inconsistencies in the hardware voltage level.

    my latest adc code is below:


    void Adc12bitPolledInitialise(void)
    {
        uint32_t timeout = 10;
        nrf_saadc_channel_config_t myConfig =
        {
            .resistor_p = NRF_SAADC_RESISTOR_DISABLED,
            .resistor_n = NRF_SAADC_RESISTOR_DISABLED,
            .gain       = NRF_SAADC_GAIN1_5,            // (1/5) Gain
            .reference  = NRF_SAADC_REFERENCE_INTERNAL, // 0.6V internal Ref Voltage
            .acq_time   = NRF_SAADC_ACQTIME_40US,       // See max source resistancetable
            .mode       = NRF_SAADC_MODE_SINGLE_ENDED,
            .burst      = NRF_SAADC_BURST_DISABLED,
            .pin_p      = NRF_SAADC_INPUT_AIN3,         // AIN3 for input Pin
            .pin_n      = NRF_SAADC_INPUT_DISABLED
        };
    
        nrf_saadc_resolution_set((nrf_saadc_resolution_t) 3);   // 2 is 12-bit , 3 for 14-bit 
        //nrf_saadc_oversample_set((nrf_saadc_oversample_t) 2);   // 2 is 4x, about 150uSecs total
        nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        nrf_saadc_enable();
    
        NRF_SAADC->CH[1].CONFIG =
                  ((myConfig.resistor_p << SAADC_CH_CONFIG_RESP_Pos)   & SAADC_CH_CONFIG_RESP_Msk)
                | ((myConfig.resistor_n << SAADC_CH_CONFIG_RESN_Pos)   & SAADC_CH_CONFIG_RESN_Msk)
                | ((myConfig.gain       << SAADC_CH_CONFIG_GAIN_Pos)   & SAADC_CH_CONFIG_GAIN_Msk)
                | ((myConfig.reference  << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk)
                | ((myConfig.acq_time   << SAADC_CH_CONFIG_TACQ_Pos)   & SAADC_CH_CONFIG_TACQ_Msk)
                | ((myConfig.mode       << SAADC_CH_CONFIG_MODE_Pos)   & SAADC_CH_CONFIG_MODE_Msk)
                | ((myConfig.burst      << SAADC_CH_CONFIG_BURST_Pos)  & SAADC_CH_CONFIG_BURST_Msk);
    
        NRF_SAADC->CH[1].PSELN = myConfig.pin_n;
        NRF_SAADC->CH[1].PSELP = myConfig.pin_p;
        nrf_gpio_pin_write(ADC_SWITCH, 1); //Turning on  the voltage divider with a transistor
    }
    
    void ble_Update_BatteryVoltage(void)
    {
        // Enable command & Turn on the Power
        nrf_gpio_pin_write(ADC_SWITCH, 1); //Turning on  the voltage divider with a transistor
        nrf_saadc_enable();
    
        nrf_delay_ms(100); // add a delay to make the capacitor charge 
    
        uint16_t result = 0;              // Some recognisable dummy value
        uint32_t timeout = 1000000;       // Trial and error
        volatile int32_t buffer[20];
    
        NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
        NRF_SAADC->RESULT.MAXCNT = 1;
    
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
    
        while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
        {
            timeout--;
        }
    
        if (timeout != 0)
        {
            result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
            result += 5;
        }
    
        // Disable command & turn off the Power to ADC Bridge to reduce power consumption
        nrf_gpio_pin_write(ADC_SWITCH, 0); //Turning off the voltage divider transistor
        nrf_saadc_disable();
    
        nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        
        while(result>100 && result >0)
        {
        result = result%100;
        }
        
        if(Old_Bat != result && result >=1 && result !=0)
        {
    
        if(result<=17)
        {
        result = 5;
        nrf_gpio_pin_write(BLUE_LED, 0); //Turning on the LOW BAttery Flash LED
        nrf_delay_ms(1000); // add a delay to make the capacitor charge 
        nrf_gpio_pin_write(BLUE_LED, 1); //Turning off the LOW BAttery Flash LED   
        }
        
        Old_Bat = result;
        ble_bas_battery_level_update(&m_bas, result, m_conn_handle);
        }
        
    }



    Since I thought there was a fundamental problem with my code/hardware configuration I didn't add the software filter yet. 

    if there seems to be no fundamental error on this config I shall proceed to add the software filter which you guys suggested.

    In this above code, I've just added some phantom code to round off the results + some offset so that the result always comes between 0-100% on BLE.

    especially here below: 

    while(result>100 && result >0)
        {
        result = result%100;
        }
        
        if(Old_Bat != result && result >=1 && result !=0)
        {
    
        if(result<=17)
        {
        result = 5;


    P.S. If you need a log for this setup I can provide you with one. (the previous log in this forum thread is not from this latest setup)

    Thanks in advance,
    Gokulnath A R

  • Hi Gokulnath, sorry for the long delay.

    What are the reslults from your lateste updated code?

    Anyways, looking over this thread, somthing that seems to be missing is the wait for the SAADC to be ready, by checking for the NRF_SAADC_EVENT_STARTED event. By adding a check for the NRF_SAADC_EVENT_STARTED event before initiating sampling, you can ensure that the ADC has fully powered up and stabilized:

    // Start the SAADC to prepare for sampling
    nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
    
    // Wait until the SAADC is ready (EVENT_STARTED is set)
    while (!nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED)) {
        // Optionally, you could add a timeout mechanism here to avoid waiting indefinitely
    }
    
    // Clear the STARTED event to enable detection next time
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    
    // Trigger the SAADC to take a sample now that it is ready
    nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);

  • By making a tiny change and masking out some of your code the raw SAADC results look ok to me without using bust mode or averaging or filtering (using 931k and 200k, so similar):

    Battery 2984
    Battery 2982
    Battery 2966
    Battery 2969
    Battery 2973
    Battery 2964
    Battery 2965
    Battery 2970
    Battery 2968
    Battery 2960
    Battery 2960
    Battery 2958
    Battery 2966
    Battery 2961
    Battery 2960
    Battery 2965
    Battery 2970

    I made these simple changes:

        .gain       = NRF_SAADC_GAIN1, // Gain (was 1.5)
    
        volatile int16_t buffer[20]; // 16-bit signed, not 32-bit signed

    I commented out the maths and added a print:

        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        // Add a printout to test raw data
        char InfoPacket[120] = "";
        snprintf(InfoPacket, sizeof(InfoPacket), "Battery %4d\r\n", result);
        uartSend(InfoPacket, strlen(InfoPacket));
        // Remove the odd maths stuff, that's a non-SAADC issue
    //  while(result>100 && result >0)
    //  {
    //  result = result%100;
    //  }
    //  if(Old_Bat != result && result >=1 && result !=0)
    //  {
    //  if(result<=17)
    //  {
    //  result = 5;
    //  nrf_gpio_pin_write(BLUE_LED, 0); //Turning on the LOW BAttery Flash LED
    //  nrf_delay_ms(1000); // add a delay to make the capacitor charge
    //  nrf_gpio_pin_write(BLUE_LED, 1); //Turning off the LOW BAttery Flash LED
    //  }
    //  Old_Bat = result;
    //  ble_bas_battery_level_update(&m_bas, result, m_conn_handle);
    //  }
    }
    

  • Hey  
    Could you precise your ADC Config? more precisely the ADC reference Voltage?

    also, question on this:
    from Datasheet of nrf52805: 


    My implemented formula: (for gain 1.5 & 0.6V REF Voltage for the above voltage divider of 220K & 36K? on a 4.2V Battery)
    result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;

    is the above correct? I think my gain might be incorrect!  where My Desired Battery voltage range is this: 4.2V 100% => 3.63V 0%

    or should it be like this? (for gain 1 & 0.6V REF Voltage for the above voltage divider of 220K & 36K? on a 4.2V Battery )
    result = ((buffer[0] * 1000L) * 1.667 * 16384);

    Vadc= Vbat * ((360K)/(360K+2M2)) => Vadc = Vbat * 0.140625

    // Input range of internal Vdd measurement = (0.6 V)/(1) = 0.6 V MAX in External Resistor Divider Output.
    // 16384 ADC counts with 14-bit sampling:  0.1v = 2730.6 ADC Counts
    // Resistor Divider 2.2M & 360K
    // 4.2V  => 0.591 volts -> Assuming 100% Battery SoC
    // 3.63V => 0.51 Volts -> Assuming 0% Battery SoC
    // 
    
    
    if (timeout != 0)
        {
            //result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
            result = (float)((buffer[0] * 1000L) * 1.667 * 16384);
            result = result/0.140625;
            result = volttopercent(result);
        }
        
        float volttopercent(float vadc)
    {
      float Vmax = 4.2;
      float Vmin = 3.63;
      
      float percentage;
    
      percentage = ((vadc -Vmin)/(Vmax - Vmin))*100;
    
      return percentage;
    }
    
    // NOW RESULT SHOULD send VBat in terms of custom % ?


    I'm using the internal chip 0.6V.  I shall do the test on my side with this added info & shall post the results here. 

    *******************************************************************************************************************************
    See the below thread too for my reply to Helsing

    Thanks.
    Gokulnath A R

Reply
  • Hey  
    Could you precise your ADC Config? more precisely the ADC reference Voltage?

    also, question on this:
    from Datasheet of nrf52805: 


    My implemented formula: (for gain 1.5 & 0.6V REF Voltage for the above voltage divider of 220K & 36K? on a 4.2V Battery)
    result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;

    is the above correct? I think my gain might be incorrect!  where My Desired Battery voltage range is this: 4.2V 100% => 3.63V 0%

    or should it be like this? (for gain 1 & 0.6V REF Voltage for the above voltage divider of 220K & 36K? on a 4.2V Battery )
    result = ((buffer[0] * 1000L) * 1.667 * 16384);

    Vadc= Vbat * ((360K)/(360K+2M2)) => Vadc = Vbat * 0.140625

    // Input range of internal Vdd measurement = (0.6 V)/(1) = 0.6 V MAX in External Resistor Divider Output.
    // 16384 ADC counts with 14-bit sampling:  0.1v = 2730.6 ADC Counts
    // Resistor Divider 2.2M & 360K
    // 4.2V  => 0.591 volts -> Assuming 100% Battery SoC
    // 3.63V => 0.51 Volts -> Assuming 0% Battery SoC
    // 
    
    
    if (timeout != 0)
        {
            //result = ((buffer[0] * 1000L)+(ADC12_COUNTS_PER_VOLT/2)) / ADC12_COUNTS_PER_VOLT;
            result = (float)((buffer[0] * 1000L) * 1.667 * 16384);
            result = result/0.140625;
            result = volttopercent(result);
        }
        
        float volttopercent(float vadc)
    {
      float Vmax = 4.2;
      float Vmin = 3.63;
      
      float percentage;
    
      percentage = ((vadc -Vmin)/(Vmax - Vmin))*100;
    
      return percentage;
    }
    
    // NOW RESULT SHOULD send VBat in terms of custom % ?


    I'm using the internal chip 0.6V.  I shall do the test on my side with this added info & shall post the results here. 

    *******************************************************************************************************************************
    See the below thread too for my reply to Helsing

    Thanks.
    Gokulnath A R

Children
No Data
Related